Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016


Autoři: John F. Piatt aff001;  Julia K. Parrish aff002;  Heather M. Renner aff003;  Sarah K. Schoen aff001;  Timothy T. Jones aff002;  Mayumi L. Arimitsu aff004;  Kathy J. Kuletz aff005;  Barbara Bodenstein aff006;  Marisol García-Reyes aff007;  Rebecca S. Duerr aff008;  Robin M. Corcoran aff009;  Robb S. A. Kaler aff004;  Gerard J. McChesney aff010;  Richard T. Golightly aff011;  Heather A. Coletti aff012;  Robert M. Suryan aff013;  Hillary K. Burgess aff002;  Jackie Lindsey aff002;  Kirsten Lindquist aff015;  Peter M. Warzybok aff016;  Jaime Jahncke aff016;  Jan Roletto aff015;  William J. Sydeman aff007
Působiště autorů: U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, United States of America aff001;  University of Washington, School of Aquatic and Fishery Sciences, COASST, Seattle, Washington, United States of America aff002;  U.S. Fish and Wildlife Service, Alaska Maritime National Wildlife Refuge, Homer, Alaska, United States of America aff003;  U.S. Geological Survey, Alaska Science Center, Juneau, Alaska, United States of America aff004;  U.S. Fish and Wildlife Service, Migratory Bird Management, Anchorage, Alaska, United States of America aff005;  U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America aff006;  Farallon Institute, Petaluma, California, United States of America aff007;  International Bird Rescue, San Francisco Bay Center, Fairfield, California, United States of America aff008;  U.S. Fish and Wildlife Service, Kodiak National Wildlife Refuge, Kodiak, Alaska, United States of America aff009;  U.S. Fish and Wildlife Service, San Francisco Bay National Wildlife Refuge Complex, Fremont, California, United States of America aff010;  Department of Wildlife, Humboldt State University, Arcata, California, United States of America aff011;  National Park Service, Fairbanks, Alaska, United States of America aff012;  NOAA Fisheries, Alaska Fisheries Science Center, Auk Bay Laboratories, Ted Stevens Marine Research Institute, Juneau, Alaska, United States of America aff013;  Moss Landing Marine Laboratories, BeachCOMBERS, Moss Landing, California, United States of America aff014;  NOAA Greater Farallones National Marine Sanctuary, Beach Watch, San Francisco, California, United States of America aff015;  Point Blue Conservation Science, Petaluma, CA, United States of America aff016
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226087

Souhrn

About 62,000 dead or dying common murres (Uria aalge), the trophically dominant fish-eating seabird of the North Pacific, washed ashore between summer 2015 and spring 2016 on beaches from California to Alaska. Most birds were severely emaciated and, so far, no evidence for anything other than starvation was found to explain this mass mortality. Three-quarters of murres were found in the Gulf of Alaska and the remainder along the West Coast. Studies show that only a fraction of birds that die at sea typically wash ashore, and we estimate that total mortality approached 1 million birds. About two-thirds of murres killed were adults, a substantial blow to breeding populations. Additionally, 22 complete reproductive failures were observed at multiple colonies region-wide during (2015) and after (2016–2017) the mass mortality event. Die-offs and breeding failures occur sporadically in murres, but the magnitude, duration and spatial extent of this die-off, associated with multi-colony and multi-year reproductive failures, is unprecedented and astonishing. These events co-occurred with the most powerful marine heatwave on record that persisted through 2014–2016 and created an enormous volume of ocean water (the “Blob”) from California to Alaska with temperatures that exceeded average by 2–3 standard deviations. Other studies indicate that this prolonged heatwave reduced phytoplankton biomass and restructured zooplankton communities in favor of lower-calorie species, while it simultaneously increased metabolically driven food demands of ectothermic forage fish. In response, forage fish quality and quantity diminished. Similarly, large ectothermic groundfish were thought to have increased their demand for forage fish, resulting in greater top-predator demands for diminished forage fish resources. We hypothesize that these bottom-up and top-down forces created an “ectothermic vise” on forage species leading to their system-wide scarcity and resulting in mass mortality of murres and many other fish, bird and mammal species in the region during 2014–2017.

Klíčová slova:

Alaska – Beaches – Birds – Death rates – Marine fish – Predation – Seabirds – Gulf of Alaska


Zdroje

1. Hobday AJ, Alexander L V, Perkins SE, Smale DA, Straub SC, Oliver ECJ, et al. A hierarchical approach to defining marine heatwaves. Prog Oceanogr [Internet]. 2016;141:227–38. Available from: http://dx.doi.org/10.1016/j.pocean.2015.12.014

2. Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science (80-). 2004;305(5686):994–7.

3. Di Lorenzo E, Mantua N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Chang [Internet]. 2016;6(November):1042–6. Available from: http://www.nature.com/doifinder/10.1038/nclimate3082

4. Oliver ECJ, Donat MG, Burrows MT, Moore PJ, Smale DA, Alexander L V., et al. Longer and more frequent marine heatwaves over the past century. Nat Commun [Internet]. 2018;9(1):1–12. Available from: doi: 10.1038/s41467-017-02088-w

5. Frölicher TL, Fischer EM, Gruber N. Marine heatwaves under global warming. Nature. 2018;560(7718):360–4. doi: 10.1038/s41586-018-0383-9 30111788

6. Bond NA, Cronin MF, Freeland H, Mantua N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett. 2015;42:3414–20.

7. Gentemann CL, Fewings MR, García-Reyes M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys Res Lett. 2017;44(1):312–9.

8. Zaba KD, Rudnick DL. The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophys Res Lett. 2016;43(3):1241–8.

9. Wells BK, Schroeder ID, Bograd SJ, Hazen EL, Jacox MG, Leising AW, et al. State of the California Current 2016–2017: still anything but “normal” in the north. CalCOFI Rep. 2017;58:1–55.

10. Hobday AJ, Oliver ECJ, Gupta A Sen, Benthuysen JA, Burrows MT, Donat MG, et al. Categorizing and naming marine heatwaves. Oceanography. 2018;31(2):162–73.

11. Whitney FA. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys Res Lett. 2015;42:428–31.

12. Leising AW, Schroeder I, Bograd S, Abell J, Durazo R, Caxiola-Castro G, et al. State of the California Current 2014–15: Impacts of the warm-water “Blob.” CalCOFI Rep. 2015;56:31–68.

13. McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43(19):10,366–10,376.

14. Jones T, Parrish JK, Peterson WT, Bjorkstedt EP, Bond NA, Ballance LT, et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys Res Lett. 2018;3193–202.

15. McClatchie S, Field J, Thompson AR, Gerrodette T, Lowry M, Al E. Food limitation of sea lion pups and the decline of forage off central and southern California. R Soc Open Sci. 2016;3(October):150628. doi: 10.1098/rsos.150628 27069651

16. Savage K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Fish Report, Juneau. 2017;August:1–42.

17. Tuck LM. The Murres: their distribution, populations and biology—a study of the genus Uria. Ottawa: Canadian Wildlife Monograph Series; 1961. 260 p.

18. Camphuysen CJ, Wright PJ, Leopold M, Huppop O, Reid JB. A review of the causes, and consequences at the population level, of mass mortalities of seabirds. ICES Coop Res Rep. 1999;232(January):51–66.

19. Hodder J, Graybill MR. Reproduction and survival of seabirds in Oregon during the 1982–1983 El Niño. Condor. 1985;87(4):535–41.

20. Piatt JF, Van Pelt TI. Mass-mortality of guillemots (Uria aalge) in the Gulf of Alaska in 1993. Mar Pollut Bull. 1997;34(8):656–62.

21. Piatt JF, Drew GS, van Pelt TI, Abookire AA, Nielsen A, Shultz MT, et al. Biological Effects of the 1997/98 ENSO in Cook Inlet, Alaska. North Pacific Mar Sci Organ Sci Rep. 1999;No. 10:82–6.

22. Parrish JK, Bond NA, Nevins H, Mantua N, Loeffel R, Peterson WT, et al. Beached birds and physical forcing in the California Current System. Mar Ecol Prog Ser. 2007;352:275–88.

23. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. 2003;108(D14):4407.

24. Newton KM, Croll DA, Nevins HM, Benson SR, Harvey JT, Tershy BR. At-sea mortality of seabirds based on beachcast and offshore surveys. Mar Ecol Prog Ser. 2009;392:295–305.

25. Roletto J, Mortenson J, Harrald I, Hall J, Grella L. Beached bird surveys and chronic oil pollution in Central California. Mar Ornithol. 2003;31(1):21–8.

26. Van Pelt TI, Piatt JF. Deposition and persistence of beachcast seabird carcasses. Mar Pollut Bull. 1995;30(12):794–802.

27. Tavares DC, De Moura JF, Siciliano S. Environmental predictors of seabird wrecks in a tropical coastal area. PLoS One. 2016;11(12):1–20.

28. Parrish J. Beached birds: A COASST field guide to Alaska. Seattle, WA: Wavefall Press; 2008. 150 p.

29. Pyle P. Identification guide to North American Birds, Part II. Ann Arbor MI: Sheridan Books; 2008. 1–836 p.

30. Friend M, Franson JC. Field Manual of Wildlife Diseases. General Field Procedures and Diseases of Birds. Information and Technology Report 01. Washington, D.C.: US Department of the Interior and US Geological Survey.; 1999.

31. Lefebvre KA, Quakenbush L, Frame E, Huntington KB, Sheffield G, Stimmelmayr R, et al. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae. 2016;55:13–24. doi: 10.1016/j.hal.2016.01.007 28073526

32. Van Franeker JA. Save the North Sea Fulmar-Litter-EcoQO Manual Part 1: Collection and dissection procedures. Alterra-rapport, Netherlands. 2004;672:40.

33. Work TM. Avian Necropsy Manual for Biologists in Remote Refuges. USGS Natl Wildl Heal Cent. 2000;NWHC-HFS:30.

34. Broughton JM. Size of the bursa of Fabricus in relation to gonad size and age in Laysan and Black-footed Albatrosses. Condor. 1994;203–7.

35. Camphuysen CJ, VanFraneker JA. Ageing and sexing manual for stranded seabirds. Tech Doc 41 Handb Oil Impact Assessment, Ver 10 [Internet]. 2007;1–8. Available from: www.oiledwildlife.eu

36. Duerr RS, Klasing KC. Tissue component and organ mass changes associated with declines in body mass in three seabird species received for rehabilitation in California. Mar Ornithol. 2015;43(1):11–8.

37. USFWS. Standardized protocols for annual seabird monitoring camps at Aiktak, Buldir, Chowiet, St. George, St. Lazaria and St. Paul islands and Cape Lisburne in the Alaska Maritime National Wildlife Refuge in 2016. AMNWR 2016/04. Homer, Alaska: USFWS Alaska Maritime National Wildlife Refuge; 2016.

38. Piatt JF, Harding AMA, Shultz MT, Speckman SG, van Pelt TI, Drew GS, et al. Seabirds as indicators of marine food supplies: Cairns revisited. Mar Ecol Prog Ser. 2007;352:221–34.

39. Wanless S, Harris MP, Redman P, Speakman JR. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar Ecol Prog Ser. 2005;294:1–8.

40. Dragoo DE, Renner HM, Kaler RSA. Breeding status and population trends of seabirds in Alaska, 2018. USFWS Annu Rep. 2019;AMNWR(2019/03):1–71.

41. Horton CA, Suryan RM. Brown Pelicans: A new disturbance source to breeding Common Murres in Oregon? 2012;38(2):84–8.

42. Bailey EP, Davenport G. Die-off of common murres on the Alaska Peninsula and Unimak Island. Auk. 1971;91:215–9.

43. Piatt JF, Lensink CJ, Butler W, Kendziorek M, Nysewander DR. Immediate impact of the Exxon Valdez oil spill on marine birds. Auk. 1990;107(2):387–97.

44. Piatt JF, Ford RG. How many seabirds were killed by the Exxon Valdez oil spill? Am Fish Soc Symp. 1996;18:712–9.

45. Ford RG, Bonnell ML, Varoujean DH, Page GW, Carter HR, Sharp BE, et al. Total direct mortality of seabirds from the Exxon Valdez oil spill. In: Rice SD, Spies RB, Wolfe DA, Wright BA, editors. Exxon Valdez Oil Spill Symposium proceedings. American Fisheries Society Symposium 18; 1996. p. 684–711.

46. Manuwal DA, Carter HR, Zimmerman TS, Orthmeyer DL. Biology and Conservation of the Common Murre in California, Oregon, Washington, and British Columbia Volume 1: Natural History and Population Trends. Information and Technology Report USGS/BRD/ITR-2000-0012. 2000. 132 p.

47. Bayer RD, Lowe RW, Loeffel RE. Persistent Summer Mortalities of Common Murres along the Oregon Central Coast. Condor. 1991;93(3):516–25.

48. Morley TI, Fayet AL, Jessop H, Veron P, Veron M, Clark J, et al. The seabird wreck in the Bay of Biscay and Southwest Approaches in 2014: A review of reported mortality. Seabird. 2016;29:22–38.

49. MacDonald A, Heath M, Edwards M, Furness R, Pinnegar JK, Wanless S, et al. Climate driven trophic cascades affecting seabirds around the British Isles. Oceanogr Mar Biol—An Annu Rev. 2015;53(August):55–79.

50. Burthe S, Daunt F, Butler A, Elston D a., Frederiksen M, Johns D, et al. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Mar Ecol Prog Ser. 2012;454:119–33.

51. Russell DJF, Wanless S, Collingham YC, Anderson BJ, Beale C, Reid JB, et al. Beyond climate envelopes: Bio-climate modelling accords with observed 25-year changes in seabird populations of the British Isles. Divers Distrib. 2015;21(2):211–22.

52. Frederiksen M, Furness RW, Wanless S. Regional variation in the role of bottom-up and top-down processes in controlling sandeel abundance in the North Sea. Mar Ecol Prog Ser. 2007;337:279–86.

53. Oliver ECJ, Benthuysen JA, Bindoff NL, Hobday AJ, Holbrook NJ, Mundy CN, et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat Commun. 2017;8:1–12. doi: 10.1038/s41467-016-0009-6

54. Clifford H, Tennyson A, Miskelly C, Taylor G. New Zealand’s largest recorded seabird wreck. South Bird. 2011;(47):10–2.

55. Rowe S, Plant A. Beach Patrollers’ Guide to Stormcast Seabirds (Procellariiformes) Found in New Zealand. Ornitholgical Soc New Zeal Rep [Internet]. 2015;28. Available from: http://osnz.org.nz/sites/osnz.org.nz/files/Beach patrollers guide 1212_0.pdf

56. Hampton S, Zafonte M. Factors influencing beached bird collection during the Luckenbach 2001–2002 oil spill. Mar Ornithol. 2006;34(2):109–13.

57. Munilla I, Arcos JM, Oro D, Álvarez D, Leyenda PM, Velando A. Mass mortality of seabirds in the aftermath of the Prestige oil spill. Ecosphere. 2011;2(7).

58. Haney JC, Geiger HJ, Short JW. Bird mortality from the Deepwater Horizon oil spill. II. Carcass sampling and exposure probability in the coastal Gulf of Mexico. 2014;1–8.

59. Hyrenbach KD, Baduini CL, Hunt GL. Line transect estimates of Short-tailed Shearwater Puffinus tenuirostris mortality in the south-eastern Bering Sea, 1997–1999. Mar Ornithol. 2001;29(1):11–8.

60. Lee DE, Abraham CL, Warzybok PM, Bradley RW, Sydeman WJ. Age-specific survival, breeding success and recruitment in common murres Uria aalge of the California Current system. Auk. 2008;125(2):316–25.

61. Erikstad KE, Reiertsen TK, Barrett RT, Vikebø F, Sandvik H. Seabird-fish interactions: the fall and rise of a common guillemot Uria aalge population. Mar Ecol Prog Ser. 2013 Feb 14;475:267–76.

62. Reed TE, Harris MP, Wanless S. Skipped breeding in common guillemots in a changing climate: restraint or constraint? Front Ecol Evol. 2015;3(January):1–13.

63. Piatt JF, Harding AMA. Population Ecology of Seabirds in Cook Inlet. In: Spies R, editor. Long-Term Ecological Change in the Northern Gulf of Alaska. Amsterdam: Elsevier; 2007. p. 335–52.

64. Vader W, Barrett RT, Erikstad KE, Strann KB. Differential responses of common and thick-billed murres to a crash in the capelin stock in the southern Bering Sea. Stud Avian Biol. 1990;14:175–80.

65. Sakuma KM, Field JC, Mantua NJ, Ralston S. Anomalous epipelagic micronekton assemblage patterns in the neritic waters of the California Current in spring 2015 during a period of extreme ocean conditions. CalCOFI Rep. 2016;57:163–83.

66. Siddon E, Zador S. Ecosystem Considerations 2017: Status of the Eastern Bering Sea Marine Ecosystem. Natl Mar Fish Serv Rep [Internet]. 2017;(November). Available from: https://www.fisheries.noaa.gov/alaska/ecosystems/ecosystem-status-reports-gulf-alaska-bering-sea-and-aleutian-islands

67. Zador SG, Yasumiishi E. Ecosystem Considerations 2016 Status of the Gulf of Alaska Marine Ecosystem. Natl Mar Fish Serv Rep [Internet]. 2016;(December):146. Available from: https://www.fisheries.noaa.gov/alaska/ecosystems/ecosystem-status-reports-gulf-alaska-bering-sea-and-aleutian-islands

68. Zador S. Ecosystem Considerations 2015 Status of Alaska’s Marine Ecosystems. Natl Mar Fish Serv Rep [Internet]. 2015;(November):297. Available from: https://www.fisheries.noaa.gov/alaska/ecosystems/ecosystem-status-reports-gulf-alaska-bering-sea-and-aleutian-islands

69. Holsman KK, Aydin K, Sullivan J, Hurst T, Kruse GH. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish Oceanogr. 2018;28(3):345–58.

70. Harvey C, Garfield T. Ecosystem Status Report of the California Current for 2017. NOAA Tech Memo NMFS-NWFSC-139. 2017;1–22.

71. McClatchie S, Goericke R, Leising A, Auth TD, Al E. State of the California Current 2015–16: Comparisons with the 1997–98 El Niño. CalCOFI Rep. 2016;57:5–61.

72. Cavole LM, Demko AM, Diner RE, Giddings A, Koester I, Pagniello C, et al. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific. Oceanography. 2016;29(2):273–85.

73. Neilson JL, Gabriele CM, Taylor-Thomas L. Recent declines in Humpback Whale population metrics in Glacier Bay & Icy Strait–Is their heyday over? [Internet]. Vol. CURRENTS, National Park Service. 2018. Available from: https://www.nps.gov/glba/blogs/currents

74. García-Borboroglu P, Boersma PD, Ruoppolo V, Pinho-da-Silva-Filho R, Corrado-Adornes A, Conte-Sena D, et al. Magellanic penguin mortality in 2008 along the SW Atlantic coast. Mar Pollut Bull. 2010;60(10):1652–7. doi: 10.1016/j.marpolbul.2010.07.006 20674946

75. Baduini CL, Lovvorn JR, Hunt GL. Determining the body condition of short-tailed shearwaters: implications for migratory flight ranges and starvation events. Mar Ecol Prog Ser. 2001;222:265–77.

76. Dänhardt A, Becker PH. Herring and Sprat Abundance Indices Predict Chick Growth and Reproductive Performance of Common Terns Breeding in the Wadden Sea. Ecosystems. 2011 May 7;14(5):791–803.

77. Borstad G, Crawford W, Hipfner JM, Thomson R, Hyatt K. Environmental control of the breeding success of rhinoceros auklets at Triangle Island, British Columbia. Mar Ecol Prog Ser. 2011 Mar 1;424:285–302.

78. Tavares DC, Moura JF, Merico A, Siciliano S. Mortality of seabirds migrating across the tropical Atlantic in relation to oceanographic processes. Anim Conserv. 2019;2004:acv.12539.

79. Ainley DG, Spear LB, Allen SG, Ribic CA. Temporal and Spatial Patterns in the Diet of the Common Murre in California Waters. Condor. 1996;98(4):691–705.

80. Gladics AJ, Suryan RM, Brodeur RD, Segui LM, Filliger LZ. Constancy and change in marine predator diets across a shift in oceanographic conditions in the Northern California Current. Mar Biol. 2014;161(4):837–51.

81. Miller AK, Sydeman WJ. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar Ecol Prog Ser. 2004;281:207–16.

82. Piatt JF, Anderson P. Response of Common Murres to the Exxon Valdez oil spill and long-term changes in the Gulf of Alaska marine ecosystem. Am Fish Soc Symp. 1996;18:720–37.

83. Schrimpf M, Parrish JK, Pearson SF. Trade-offs in prey quality and quantity revealed through the behavioral compensation of breeding seabirds. Mar Ecol Prog Ser. 2012 Jul 24;460:247–59.

84. Elliott KH, Gaston AJ. Flight speeds of two seabirds: a test of Norberg’s hypothesis. Ibis (Lond 1859). 2005;147:783–9.

85. Piatt JF, Nettleship DN. Diving depths of four Alcids. Auk. 1985;102:293–7.

86. Ellis HI, Gabrielsen GW. Energetics of Free-Ranging Seabirds. In: Schreiber EA, Burger J, editors. Biology of Marine Birds. Boca Raton: CRC Press; 2002. p. 359–407.

87. VanPelt TI, Piatt JF, Lance BK, Roby DD. Proximate Composition and Energy Density of Some North Pacific Forage Fishes. Comp Biochem Physiol. 1997;118(4):1393–8.

88. Ainley DG, Nettleship DN, Carter HR, Storey AE. Common Murre (Uria aalge), version 2.0. In: Gill A.F. and Gill F.B., editor. Birds of North America. Wervsion 2. Ithaca, NY: Cornell Lab of Ornitology; 2002.

89. Lance MM, Thompson CW. Overlap in diets and foraging of Common Murres (Uria aalge) and Rhinoceros Auklets (Cerorhinca monocerata) after the breeding season. Auk. 2005;122:887–901.

90. Sanger GA. Winter diets of Common Murres and Marbled Murrelets in Kachemak Bay, Alaska. Condor. 1987;89(2):426–30.

91. Romano MD, Piatt JF, Roby DD. Testing the junk-food hypothesis on marine birds: Effects of prey type on growth and development. Waterbirds. 2006;29(4):407–524.

92. Holsman KK, Aydin K. Comparative methods for evaluating climate change impacts on the foraging ecology of Alaskan groundfish. Mar Ecol Prog Ser. 2015;521:217–35.

93. Hunt GL, Kato H, Mckinnell SM. Predation by marine birds and mammals in the subarctic North Pacific Ocean. PICES Sci Rep. 2000;(No. 14).

94. Wanless S, Harris MP, Newell MA, Speakman JR, Daunt F. Community-wide decline in the occurrence of lesser sandeels Ammodytes marinus in seabird chick diets at a North Sea colony. 2018;600:193–206.

95. Harding AMA, Piatt JF, Schmutz JA. Seabird behavior as an indicator of food supplies: Sensitivity across the breeding season. Mar Ecol Prog Ser. 2007;352.

96. Methven DA, Piatt JF. Seasonal abundance and vertical distribution of capelin (Mallotus villosus) in relation to water temperature at a coastal site off eastern Newfound. ICES J Mar Sci. 1991;48:187–93.

97. Dulvy NK, Rogers SI, Jennings S, Stelzenmüller V, Dye SR, Skjoldal HR. Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. J Appl Ecol. 2008;45(4):1029–39.

98. Mueter FJ, Litzow MA. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol Appl. 2008;18(2):309–20. doi: 10.1890/07-0564.1 18488598

99. Hollowed AB, Barbeaux SJ, Cokelet ED, Farley E V., Kotwicki S, Ressler PH, et al. Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep Sea Res Part II Top Stud Oceanogr. 2012;65–70:230–50.

100. McGowan DW, Goldstein ED, Arimitsu ML, Deary AL, Ormseth O, De Robertis A, et al. Spatial and temporal dynamics of Pacific capelin (Mallotus catervarius) in the Gulf of Alaska: implications for ecosystem-based fishery management. Mar Ecol Prog Ser. 2019;accepted. doi: 10.3354/meps12798

101. Peterson WT, Fisher J, Strub T, Du X, Risien C, Peterson J, et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J Geophys Res. 2017;122:7267–90.

102. Batten SD, Raitsos DE, Danielson S, Hopcroft R, Coyle K, McQuatters-Gollop A. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Res Part II Top Stud Oceanogr. 2018;147:79–86.

103. Auth TD, Daly EA, Brodeur RD, Fisher JL. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob Chang Biol. 2018;24(1):259–72. doi: 10.1111/gcb.13872 28948709

104. Maccall AD, Sydeman WJ, Davison PC, Thayer JA. Recent collapse of northern anchovy biomass off California. Fish Res. 2016;175:87–94.

105. Checkley DM, Asch RG, Rykaczewski RR. Climate, anchovy, and sardine. Ann Rev Mar Sci. 2017;9(1):469–93.

106. Gorman KB, Kline TC, Roberts ME, Sewall FF, Heintz RA, Pegau WS. Spatial and temporal variation in winter condition of juvenile Pacific herring (Clupea pallasii) in Prince William Sound, Alaska: Oceanographic exchange with the Gulf of Alaska. Deep Res Part II Top Stud Oceanogr. 2018;147:116–26.

107. VonBiela V, Arimitsu ML, Piatt JF, Heflin BM, Schoen S, Trowbridge JL, et al. Extreme reduction in nutrional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar Ecol Prog Ser. 2019;613:171–82.

108. Cunningham J, Elliott K, Cottenie K, Hatch S, Jacobs S. Individual foraging location, but not dietary, specialization: implications for rhinoceros auklets as samplers of forage fish. Mar Ecol Prog Ser. 2018;605:225–40.

109. Sydeman WJ, Piatt JF, Thompson SA, Garcia-Reyes M, Hatch SA, Arimitsu ML, et al. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific. Fish Oceanogr. 2017;26:379–95.

110. Anderson PJ, Piatt JF. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar Ecol Prog Ser. 1999;189:117–23.

111. Arimitsu ML, Piatt JF, Heflin BM, Von Biela V, Schoen SK. Monitoring long-term changes in forage fish distribution, abundance and body condition. Exxon Vald Oil Spill Counc Proj 161201114-O Final Rep. 2018;1–50.

112. Thompson SA, Arimitsu ML, Hatch SA, Piatt JF. Effects of ocean climate on the length and condition of forage fish in the Gulf of Alaska. Fish Oceanogr. 2019;28(6):658–71.

113. Baker MR, Matta ME, Beaulieu M, Paris N, Huber S, Graham OJ, et al. Intra-seasonal and inter-annual patterns in the demographics of sand lance and response to environmental drivers in the North Pacific. Mar Ecol Prog Ser. 2019;617–618:221–44.

114. Biela VR Von, Arimitsu ML, Piatt JF, Heflin B, Schoen SK, Trowbridge JL, et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014 − 2016. Mar Ecol Prog Ser. 2019;613:171–82.

115. Sreenivasan A, Heintz R. Estimation of the relationship between growth, consumption, and energy allocation in juvenile pacific cod (Gadus macrocephalus) as a function of temperature and ration. Deep Res Part II Top Stud Oceanogr. 2016;132:154–61.

116. Brodeur R, Hunsicker M, Hann A, Miller T. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: a shift to gelatinous food sources. Mar Ecol Prog Ser. 2018;

117. Bruno JF, Carr LA, O’Connor MI. Exploring the role of temperature in the ocean through metabolic scaling. Ecology. 2015;96(12):3126–40. doi: 10.1890/14-1954.1 26909420

118. Vandersea MW, Kibler SR, Tester PA, Holderied K, Hondolero DE, Powell K, et al. Environmental factors influencing the distribution and abundance of Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska. Harmful Algae. 2018;77:81–92. doi: 10.1016/j.hal.2018.06.008 30005804

119. Shumway SE, Allen SM, Boersma PD. Marine birds and harmful algal blooms: Sporadic victims or under-reported events? Harmful Algae. 2003;2(1):1–17.

120. Gibble C, Duerr R, Bodenstein B, Lindquist K, Lindsey J, Beck J, et al. Investigation of a largescale Common Murre (Uria aalge) mortality event in California, USA, in 2015. J Wildl Dis. 2018;54(3):569–74. doi: 10.7589/2017-07-179 29547358

121. Ainley DG., Spear LB., Allen SG., Ribic CA. Temporal and spatial patterns in the diet of the Common Murre in California waters. Condor. 1996;98(4):691–705.

122. Shearn-Bochsler V, Lance EW, Corcoran R, Piatt J, Bodenstein B, Frame E, et al. Fatal Paralytic Shellfish Poisoning in Kittlitz’s Murrelet (Brachyramphus brevirostris) Nestlings, Alaska, USA. J Wildl Dis. 2014;50(4):933–7. doi: 10.7589/2013-11-296 25098307

123. Van Hemert C, Schoen SK, Litaker RW, Smith MM, Arimitsu ML, Piatt JF, et al. Algal toxins in Alaska seabirds following a marine heatwave and large-scale die-off of Common Murres. Harmful Algae. 2019;in press.

124. Lewitus AJ, Horner RA, Caron DA, Garcia-Mendoza E, Hickey BM, Hunter M, et al. Harmful algal blooms along the North American west coast region: History, trends, causes, and impacts. Harmful Algae. 2012;19:133–59.

125. Cokelet ED, Bond NA, Hollowed AB, Palsson WA, Stabeno PJ, Li L, et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish Oceanogr. 2019;28(4):434–53.

126. Laevastu T. The effects of temperature anomalies on the fluctuation of fish stocks. Int Counc Explor Sea. 1984;185:214–25.

127. Brett JR. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka). Am Zool. 1971;11:99–113.

128. Daly EA, Brodeur RD. Warming ocean conditions relate to increased trophic requirements of threatened and endangered salmon. PLoS One. 2015;10(12):1–23.

129. Barbeaux S, Aydin K, Fissel B, Holsman K, Palsson W, Shotwell K, et al. Chapter 2: Assessment of the Pacific cod stock in the Gulf of Alaska. North Pacific Fish Manag Counc Gulf Alaska Stock Assess Fish Eval Rep. 2018;(December):1–160.

130. Witherell D, Armstrong J. Groundfish Species Profiles 2015 [Internet]. North Pacific Fishery Management Council Report. Anchorage, Alaska: North Pacific Fishery Management Council; 2015. 1–68 p. Available from: www.npfmc.org

131. Aydin KY, Gaichas SK, Ortiz I, Kinzey D, Friday NA. A Comparison of the Bering Sea, Gulf of Alaska, and Aleutian Islands large marine ecosystems through food web modeling. NOAA Tech Memo NMFS. 2007;AFSC-178.

132. Stephensen SW, Irons DB. Comparison of colonial breeding seabirds in the eastern Bering Sea and Gulf of Alaska. Mar Ornithol. 2003;31(2):167–73.

133. Roth JE, Nur N, Warzybok P, Sydeman WJ. Annual prey consumption of a dominant seabird, the common murre, in the California Current system. ICES J Mar Sci. 2008;65(6):1046–56.

134. Aydin KY, Mueter FJ. The Bering Sea—A dynamic food web perspective. Deep Sea Res Part II. 2007;54:2501–25.

135. Gaichas SK, Skaret G, Falk-Petersen J, Link JS, Overholtz W, Megrey BA, et al. A comparison of community and trophic structure in five marine ecosystems based on energy budgets and system metrics. Prog Oceanogr. 2009 Apr;81:47–62.

136. Engelhard GH, Peck MA, Rindorf A, Smout SC, van Deurs M, Raab K, et al. Forage fish, their fisheries, and their predators: who drives whom? ICES J Mar Sci. 2013;70:1439–50.

137. Garfield TD, Harvey C. California Current Integrated Ecosystem Assessment (CCIEA) State of the California Current Report, 2016. Pacific Fish Manag Counc. 2016;(March):1–20.

138. PFMC. Status of the Pacific Coast Groundfish Fishery. Pacific Fish Manag Counc—Stock Assess Rep. 2016;(December):1–310.

139. Holsman KK, Ianelli JN, Aydin K. 2017 Multi-species Stock Assessment for walleye pollock, Pacific cod, and arrowtooth flounder in the Eastern Bering Sea. Stock Assess Fish Eval Rep Groundf Resour Bering Sea/Aleutian Islands Reg. 2017;(November):181–218.

140. Moffitt EA, Punt AE, Holsman K, Aydin KY, Ianelli JN, Ortiz I. Moving towards ecosystem-based fisheries management: Options for parameterizing multi-species biological reference points. Deep Res Part II Top Stud Oceanogr. 2016;134:350–9.

141. Springer AM, Van Vliet GB. Climate change, pink salmon, and the nexus between bottom-up and top-down forcing in the subarctic Pacific Ocean and Bering Sea. Proc Natl Acad Sci. 2014;111(18):E1880–8. doi: 10.1073/pnas.1319089111 24706809

142. Koehn LE, Essington TE, Marshall KN, Sydeman WJ, Szoboszlai AI, Thayer JA. Trade-offs between forage fish fisheries and their predators in the California Current. 2017;

143. Zador S, Yasumiishi E. Ecosystem Status Report 2018 Gulf of Alaska. Natl Mar Fish Serv Rep [Internet]. 2018;(December):1–194. Available from: https://www.fisheries.noaa.gov/alaska/ecosystems/ecosystem-status-reports-gulf-alaska-bering-sea-and-aleutian-islands

144. Hunt GL Jr., Drew GS, Jahncke J, Piatt JF. Prey consumption and energy transfer by marine birds in the Gulf of Alaska. Deep Res Part II Top Stud Oceanogr. 2005;52(5–6).

145. Springer AM, Piatt JF, Shuntov VP, Van Vliet GB, Vladimirov VL, Kuzin AE, et al. Marine birds and mammals of the Pacific Subarctic Gyres. Prog Oceanogr. 1999;43(2–4).

146. Toge K, Yamashita R, Kazama K, Fukuwaka M, Yamamura O, Watanuki Y. The relationship between pink salmon biomass and the body condition of short-tailed shearwaters in the Bering Sea: can fish compete with seabirds? Proc R Soc B. 2011 Sep 7;278:2584–90. doi: 10.1098/rspb.2010.2345 21270043

147. Springer AM, Vliet GB Van, Bool N, Crowley M, Fullagar P, Lea M. Transhemispheric ecosystem disservices of pink salmon in a Pacific Ocean macrosystem. Proc Natl Acad Sci. 2018;115(22):E5038–45. doi: 10.1073/pnas.1720577115 29760093


Článek vyšel v časopise

PLOS One


2020 Číslo 1