Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies

Autoři: Siavash Raigani aff001;  Negin Karimian aff002;  Viola Huang aff002;  Anna M. Zhang aff003;  Irene Beijert aff002;  Sharon Geerts aff002;  Sonal Nagpal aff002;  Ehab O. A. Hafiz aff005;  Fermin M. Fontan aff002;  Mohamed M. Aburawi aff002;  Paria Mahboub aff002;  James F. Markmann aff001;  Robert J. Porte aff004;  Korkut Uygun aff001;  Martin Yarmush aff001;  Heidi Yeh aff001
Působiště autorů: Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America aff001;  Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America aff002;  Tufts University School of Medicine, Boston, Massachusetts, United States of America aff003;  Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands aff004;  Electron Microscopy Research Division, Theodor Bilharz Research Institute, Giza, Egypt aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.

Klíčová slova:

Bile – Biopsy – Fatty acids – Fatty liver – Lipid metabolism – Lipid profiles – Liver – Liver transplantation


1. United Network for Organ Sharing (UNOS). Available from:

2. Moosburner S, Gassner J, Nosser M, Pohl J, Wyrwal D, Claussen F, et al. Prevalence of Steatosis Hepatis in the Eurotransplant Region: Impact on Graft Acceptance Rates. HPB Surg. 2018;2018:6094936. Epub 2018/12/06. doi: 10.1155/2018/6094936 30515073; PubMed Central PMCID: PMC6236971.

3. Chu MJ, Dare AJ, Phillips AR, Bartlett AS. Donor Hepatic Steatosis and Outcome After Liver Transplantation: a Systematic Review. J Gastrointest Surg. 2015;19(9):1713–24. Epub 2015/04/29. doi: 10.1007/s11605-015-2832-1 25917535.

4. Selzner M, Clavien PA. Fatty liver in liver transplantation and surgery. Semin Liver Dis. 2001;21(1):105–13. Epub 2001/04/12. doi: 10.1055/s-2001-12933 11296690.

5. Farrell GC, Teoh NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Anat Rec (Hoboken). 2008;291(6):684–92. Epub 2008/05/20. doi: 10.1002/ar.20715 18484615.

6. Hasegawa T, Ito Y, Wijeweera J, Liu J, Malle E, Farhood A, et al. Reduced inflammatory response and increased microcirculatory disturbances during hepatic ischemia-reperfusion injury in steatotic livers of ob/ob mice. Am J Physiol Gastrointest Liver Physiol. 2007;292(5):G1385–95. Epub 2007/02/20. doi: 10.1152/ajpgi.00246.2006 17307725; PubMed Central PMCID: PMC4861211.

7. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. Jama. 1999;282(17):1659–64. Epub 1999/11/30. doi: 10.1001/jama.282.17.1659 10553793.

8. Nair S V PC, Arnold C, Diehl AM. Hepatic ATP reserve and efficiency of replenishing: comparison between obese and nonobese normal individuals. Am J Gastroenterol. 2003;98(2):466–70. Epub 2003/02/20. doi: 10.1111/j.1572-0241.2003.07221.x 12591070.

9. Vetelainen R, Bennink RJ, van Vliet AK, van Gulik TM. Mild steatosis impairs functional recovery after liver resection in an experimental model. Br J Surg. 2007;94(8):1002–8. Epub 2007/05/15. doi: 10.1002/bjs.5672 17497653.

10. Selzner M, Selzner N, Jochum W, Graf R, Clavien PA. Increased ischemic injury in old mouse liver: an ATP-dependent mechanism. Liver Transpl. 2007;13(3):382–90. Epub 2007/02/24. doi: 10.1002/lt.21100 17318856.

11. Reiniers MJ, van Golen RF, van Gulik TM, Heger M. Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal. 2014;21(7):1119–42. Epub 2013/12/04. doi: 10.1089/ars.2013.5486 24294945; PubMed Central PMCID: PMC4123468.

12. Nasralla D, Coussios CC, Mergental H, Akhtar MZ, Butler AJ, Ceresa CDL, et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557(7703):50–6. Epub 2018/04/20. doi: 10.1038/s41586-018-0047-9 29670285.

13. Boteon YL, Attard J, Boteon A, Wallace L, Reynolds G, Hubscher S, et al. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transpl. 2019;25(7):1007–22. Epub 2019/03/02. doi: 10.1002/lt.25439 30821045; PubMed Central PMCID: PMC6618030.

14. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76(1):99–128. Epub 2018/10/22. doi: 10.1007/s00018-018-2947-0 30343320.

15. Bruinsma BG, Yeh H, Ozer S, Martins PN, Farmer A, Wu W, et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant. 2014;14(6):1400–9. Epub 2014/04/25. doi: 10.1111/ajt.12727 24758155; PubMed Central PMCID: PMC4470578.

16. Karimian N, Matton AP, Westerkamp AC, Burlage LC, Op den Dries S, Leuvenink HG, et al. Ex Situ Normothermic Machine Perfusion of Donor Livers. J Vis Exp. 2015;(99):e52688. Epub 2015/06/13. doi: 10.3791/52688 26067131; PubMed Central PMCID: PMC4542958.

17. Matton APM, Burlage LC, van Rijn R, de Vries Y, Karangwa SA, Nijsten MW, et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transpl. 2018;24(4):528–38. Epub 2017/12/28. doi: 10.1002/lt.25005 29281862; PubMed Central PMCID: PMC5900573.

18. Laing RW, Bhogal RH, Wallace L, Boteon Y, Neil DAH, Smith A, et al. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion. Transplantation. 2017;101(11):2746–56. Epub 2017/05/19. doi: 10.1097/TP.0000000000001821 28520579; PubMed Central PMCID: PMC5656179.

19. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation. 1993;55(6):1265–72. Epub 1993/06/01. doi: 10.1097/00007890-199306000-00011 7685932.

20. Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc. 2012;7(5):872–81. Epub 2012/04/14. doi: 10.1038/nprot.2012.024 22498707; PubMed Central PMCID: PMC3685491.

21. Sacco R, Eggenhoffner R, Giacomelli L. Glutathione in the treatment of liver diseases: insights from clinical practice. Minerva Gastroenterol Dietol. 2016;62(4):316–24. Epub 2016/09/08. 27603810.

22. Sun Y, Pu LY, Lu L, Wang XH, Zhang F, Rao JH. N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World J Gastroenterol. 2014;20(41):15289–98. Epub 2014/11/12. doi: 10.3748/wjg.v20.i41.15289 25386077; PubMed Central PMCID: PMC4223262.

23. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 37a-37d. Epub 2011/09/06. doi: 10.1093/eurheartj/ehr304 21890489; PubMed Central PMCID: PMC3345541.

24. Eccleston HB, Andringa KK, Betancourt AM, King AL, Mantena SK, Swain TM, et al. Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. Antioxid Redox Signal. 2011;15(2):447–59. Epub 2010/10/06. doi: 10.1089/ars.2010.3395 20919931; PubMed Central PMCID: PMC3118652.

25. Karaa A, Kamoun WS, Clemens MG. Oxidative stress disrupts nitric oxide synthase activation in liver endothelial cells. Free Radic Biol Med. 2005;39(10):1320–31. Epub 2005/11/01. doi: 10.1016/j.freeradbiomed.2005.06.014 16257641.

26. Manne V, Handa P, Kowdley KV. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin Liver Dis. 2018;22(1):23–37. Epub 2017/11/13. doi: 10.1016/j.cld.2017.08.007 29128059.

27. Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–76. Epub 2017/12/17. doi: 10.1007/s00535-017-1415-1 29247356; PubMed Central PMCID: PMC5847174.

28. Vilar-Gomez E, Vuppalanchi R, Gawrieh S, Ghabril M, Saxena R, Cummings OW, et al. Vitamin E Improves Transplant-Free Survival and Hepatic Decompensation Among Patients With Nonalcoholic Steatohepatitis and Advanced Fibrosis. Hepatology. 2018. Epub 2018/12/07. doi: 10.1002/hep.30368 30506586.

29. Barros MA, Vasconcelos PR, Souza CM, Andrade GM, Moraes MO, Costa PE, et al. L-Alanyl-Glutamine Attenuates Oxidative Stress in Liver Transplantation Patients. Transplant Proc. 2015;47(8):2478–82. Epub 2015/11/01. doi: 10.1016/j.transproceed.2015.08.001 26518955.

30. Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Induction of a hypermetabolic state in cultured hepatocytes by glucagon and H2O2. Metab Eng. 2003;5(4):221–9. Epub 2003/12/04. doi: 10.1016/s1096-7176(03)00042-9 14642350.

31. Nativ NI, Yarmush G, So A, Barminko J, Maguire TJ, Schloss R, et al. Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol. Liver Transpl. 2014;20(8):1000–11. Epub 2014/05/08. doi: 10.1002/lt.23905 24802973; PubMed Central PMCID: PMC4117728.

32. Liu Q, Berendsen T, Izamis ML, Uygun B, Yarmush ML, Uygun K. Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplant Proc. 2013;45(9):3209–13. Epub 2013/11/05. doi: 10.1016/j.transproceed.2013.05.005 24182786; PubMed Central PMCID: PMC3843811.

33. Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, et al. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 2015;47(3):603–15. Epub 2014/12/24. doi: 10.1007/s00726-014-1894-9 25534430; PubMed Central PMCID: PMC4329055.

34. Bruinsma BG, Sridharan GV, Weeder PD, Avruch JH, Saeidi N, Ozer S, et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci Rep. 2016;6:22415. Epub 2016/03/05. doi: 10.1038/srep22415 26935866; PubMed Central PMCID: PMC4776101.

35. Lee K, Haddad A, Osme A, Kim C, Borzou A, Ilchenko S, et al. Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits. Mol Cell Proteomics. 2018;17(12):2371–86. Epub 2018/09/02. doi: 10.1074/mcp.RA118.000961 30171159; PubMed Central PMCID: PMC6283295.

36. Laing RW, Mergental H, Yap C, Kirkham A, Whilku M, Barton D, et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open. 2017;7(11):e017733. Epub 2017/12/01. doi: 10.1136/bmjopen-2017-017733 29183928; PubMed Central PMCID: PMC5719273.

37. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans. 2017;45(5):1105–15. Epub 2017/09/14. doi: 10.1042/BST20160474 28900017.

38. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim Biophys Acta. 2010;1801(12):1260–73. Epub 2010/08/17. doi: 10.1016/j.bbalip.2010.08.002 20708099; PubMed Central PMCID: PMC2994245.

39. Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–40. Epub 2013/06/12. doi: 10.1016/j.coph.2013.05.012 23747022; PubMed Central PMCID: PMC3732499.

40. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61. Epub 2008/04/26. doi: 10.1038/nri2294 18437155; PubMed Central PMCID: PMC2744593.

41. Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT, George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56(4):944–51. Epub 2011/10/26. doi: 10.1016/j.jhep.2011.08.018 22023985.

42. Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, et al. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation. 2017;135(15):e867–e84. Epub 2017/03/16. doi: 10.1161/CIR.0000000000000482 28289069.

43. Tobin D, Brevik-Andersen M, Qin Y, Innes JK, Calder PC. Evaluation of a High Concentrate Omega-3 for Correcting the Omega-3 Fatty Acid Nutritional Deficiency in Non-Alcoholic Fatty Liver Disease (CONDIN). Nutrients. 2018;10(8). Epub 2018/08/22. doi: 10.3390/nu10081126 30127297; PubMed Central PMCID: PMC6115838.

44. Yan JH, Guan BJ, Gao HY, Peng XE. Omega-3 polyunsaturated fatty acid supplementation and non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2018;97(37):e12271. Epub 2018/09/15. doi: 10.1097/MD.0000000000012271 30212963; PubMed Central PMCID: PMC6155966.

45. Baker MA, Nandivada P, Mitchell PD, Fell GL, Pan A, Anez-Bustillos L, et al. Pretreatment with intravenous fish oil reduces hepatic ischemia reperfusion injury in a murine model. Surgery. 2018;163(5):1035–9. Epub 2018/01/24. doi: 10.1016/j.surg.2017.10.071 29358007; PubMed Central PMCID: PMC5936675.

46. Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212. Epub 2013/07/31. doi: 10.1002/cphy.c120023 23897684; PubMed Central PMCID: PMC4422175.

47. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385(9972):956–65. Epub 2014/12/04. doi: 10.1016/S0140-6736(14)61933-4 25468160; PubMed Central PMCID: PMC4447192.

48. Liu Q, Nassar A, Buccini L, Iuppa G, Soliman B, Pezzati D, et al. Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion. Liver Transpl. 2018;24(2):233–45. Epub 2017/11/11. doi: 10.1002/lt.24972 29125712.

49. Watson CJE, Kosmoliaptsis V, Pley C, Randle L, Fear C, Crick K, et al. Observations on the ex situ perfusion of livers for transplantation. Am J Transplant. 2018;18(8):2005–20. Epub 2018/02/09. doi: 10.1111/ajt.14687 29419931; PubMed Central PMCID: PMC6099221.

50. de Vries Y, Matton APM, Nijsten MWN, Werner MJM, van den Berg AP, de Boer MT, et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am J Transplant. 2019;19(4):1202–11. Epub 2018/12/28. doi: 10.1111/ajt.15228 30588774; PubMed Central PMCID: PMC6590255.

51. Alexander J, Gildea L, Balog J, Speller A, McKenzie J, Muirhead L, et al. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife. Surg Endosc. 2017;31(3):1361–70. Epub 2016/08/10. doi: 10.1007/s00464-016-5121-5 27501728; PubMed Central PMCID: PMC5315709.

52. Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, El-Bahrawy MA, et al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br J Cancer. 2018;118(10):1349–58. Epub 2018/04/20. doi: 10.1038/s41416-018-0048-3 29670294; PubMed Central PMCID: PMC5959892.

53. St John ER, Balog J, McKenzie JS, Rossi M, Covington A, Muirhead L, et al. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res. 2017;19(1):59. Epub 2017/05/26. doi: 10.1186/s13058-017-0845-2 28535818; PubMed Central PMCID: PMC5442854.

54. Kamisoglu K, Acevedo A, Almon RR, Coyle S, Corbett S, Dubois DC, et al. Understanding Physiology in the Continuum: Integration of Information from Multiple -Omics Levels. Front Pharmacol. 2017;8:91. Epub 2017/03/16. doi: 10.3389/fphar.2017.00091 28289389; PubMed Central PMCID: PMC5327699.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden