HY5 is not integral to light mediated stomatal development in Arabidopsis

Autoři: Nicholas Zoulias aff001;  Jordan Brown aff001;  James Rowe aff002;  Stuart A. Casson aff001
Působiště autorů: Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom aff001;  Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222480


Light is a crucial signal that regulates many aspects of plant physiology and growth including the development of stomata, the pores in the epidermal surface of the leaf. Light signals positively regulate stomatal development leading to changes in stomatal density and stomatal index (SI; the proportion of cells in the epidermis that are stomata). Both phytochrome and cryptochrome photoreceptors are required to regulate stomatal development in response to light. The transcription factor ELONGATED HYPOCOTYL 5 (HY5) is a key regulator of light signalling, acting downstream of photoreceptors. We hypothesised that HY5 could regulate stomatal development in response to light signals due to the putative presence of HY5 binding sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide regulator of stomatal development. Our analysis shows that HY5 does have the potential to regulate the STOM promoter in vitro and that HY5 is expressed in both the epidermis and mesophyll. However, analysis of hy5 and hy5 hyh double mutants (HYH; HY5-HOMOLOG), found that they had normal stomatal development under different light conditions and the expression of stomatal developmental genes was not perturbed following light shift experiments. Analysis of stable lines overexpressing HY5 also showed no change in stomatal development or the expression of stomatal developmental genes. We therefore conclude that whilst HY5 has the potential to regulate the expression of STOM, it does not have a major role in regulating stomatal development in response to light signals.

Klíčová slova:

Epidermis – Hypocotyl – Leaves – Light – Regulator genes – Stomata – Transcription factors – Transcriptional control


1. Assmann SM, Jegla T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr Opin Plant Biol. 2016;33:157–67. doi: 10.1016/j.pbi.2016.07.003 27518594

2. Zoulias N, Harrison EL, Casson SA, Gray JE. Molecular control of stomatal development. Biochem J. 2018;475(2):441–54. doi: 10.1042/BCJ20170413 29386377

3. MacAlister CA, Ohashi-Ito K, Bergmann DC. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature. 2007;445(7127):537–40. doi: 10.1038/nature05491 17183265

4. Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. Termination of asymmetric cell division and differentiation of stomata. Nature. 2007;445(7127):501–5. doi: 10.1038/nature05467 17183267

5. Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell. 2006;18(10):2493–505. doi: 10.1105/tpc.106.046136 17088607

6. Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, et al. SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation. The Plant Cell. 2008;20(7):1775–85. doi: 10.1105/tpc.108.060848 18641265

7. Lampard GR, MacAlister CA, Bergmann DC. Stomatal Initiation Is Controlled by MAPK-Mediated Regulation of the bHLH SPEECHLESS. Science. 2008;322(5904):1113. doi: 10.1126/science.1162263 19008449

8. Putarjunan A, Ruble J, Srivastava A, Zhao C, Rychel AL, Hofstetter AK, et al. Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Nat Plants. 2019;5(7):742–54. doi: 10.1038/s41477-019-0440-x 31235876

9. Lee JS, Hnilova M, Maes M, Lin Y-CL, Putarjunan A, Han S-K, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature. 2015;522(7557):439–43. doi: 10.1038/nature14561 26083750

10. Meng X, Chen X, Mang H, Liu C, Yu X, Gao X, et al. Differential Function of Arabidopsis SERK Family Receptor-like Kinases in Stomatal Patterning. Current Biology. 2015;25(18):2361–72. doi: 10.1016/j.cub.2015.07.068 26320950

11. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, et al. Stomagen positively regulates stomatal density in Arabidopsis. Nature. 2010;463(7278):241–4. doi: 10.1038/nature08682 20010603

12. Casson SA, Franklin KA, Gray JE, Grierson CS, Whitelam GC, Hetherington AM. phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol. 2009;19(3):229–34. doi: 10.1016/j.cub.2008.12.046 19185498

13. Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell. 2009;21(9):2624–41. doi: 10.1105/tpc.109.069765 19794114

14. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, et al. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell. 1998;1(2):213–22. doi: 10.1016/s1097-2765(00)80022-2 9659918

15. Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell. 1998;10(5):673–83. doi: 10.1105/tpc.10.5.673 9596629

16. Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 2002;16(10):1247–59. doi: 10.1101/gad.969702 12023303

17. Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000;405(6785):462–6. doi: 10.1038/35013076 10839542

18. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell. 2007;19(3):731–49. doi: 10.1105/tpc.106.047688 17337630

19. Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993;5(2):147–57. doi: 10.1105/tpc.5.2.147 8453299

20. Chen H, Zhang J, Neff MM, Hong S-W, Zhang H, Deng X-W, et al. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proceedings of the National Academy of Sciences. 2008;105(11):4495.

21. Hunt L, Bailey KJ, Gray, JE. The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytologist. 2010;186(3):609–614. doi: 10.1111/j.1469-8137.2010.03200.x 20149115

22. Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19(6):1349. doi: 10.1093/nar/19.6.1349 2030957

23. Zhong S, Lin Z, Fray RG, Grierson D. Improved plant transformation vectors for fluorescent protein tagging. Transgenic Res. 2008;17(5):985–9. doi: 10.1007/s11248-008-9199-y 18594998

24. Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 2009;59(1):169–78. doi: 10.1111/j.1365-313X.2009.03851.x 19309456

25. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16(6):735–43. doi: 10.1046/j.1365-313x.1998.00343.x 10069079

26. Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133(2):462–9. doi: 10.1104/pp.103.027979 14555774

27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609

28. Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods. 2005;1:13–. doi: 10.1186/1746-4811-1-13 16359558

29. Wu F-H, Shen S-C, Lee L-Y, Lee S-H, Chan M-T, Lin C-S. Tape-Arabidopsis Sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods. 2009;5(1):16.

30. Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng XW, et al. Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis. Plant J. 2002;31(6):741–53. doi: 10.1046/j.1365-313x.2002.01395.x 12220265

31. Binkert M, Kozma-Bognar L, Terecskei K, De Veylder L, Nagy F, Ulm R. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell. 2014;26(10):4200–13. doi: 10.1105/tpc.114.130716 25351492

32. Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X. Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition. Curr Biol. 2016;26(5):640–6. doi: 10.1016/j.cub.2015.12.066 26877080

33. Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, et al. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One. 2017;12(7):e0180449. doi: 10.1371/journal.pone.0180449 28683099

34. Zhang JY, He SB, Li L, Yang HQ. Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll. Proc Natl Acad Sci U S A. 2014;111(29):E3015–23. doi: 10.1073/pnas.1400542111 25002510

35. Lee JH, Jung JH, Park CM. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Plant Cell. 2017;29(11):2817–30. doi: 10.1105/tpc.17.00371 29070509

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden