Forward lunge before and after anterior cruciate ligament reconstruction: Faster movement but unchanged knee joint biomechanics

Autoři: Tine Alkjær aff001;  Kenneth B. Smale aff002;  Teresa E. Flaxman aff003;  Ida F. Marker aff001;  Erik B. Simonsen aff004;  Daniel. L. Benoit aff002;  Michael R. Krogsgaard aff005
Působiště autorů: Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark aff001;  School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada aff002;  School of Rehabilitation Sciences, University of Ottawa, Ottawa, ON, Canada aff003;  Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark aff004;  Section for Sports Traumatology, M51, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The forward lunge (FL) may be a promising movement to assess functional outcome after ACL reconstruction. Thus, we aimed to investigate the FL movement pattern before and after ACL reconstruction with a comparison to healthy controls to determine if differences were present. Twenty-eight ACL injured participants and 28 matched healthy controls were included. They performed FL movements while sagittal plane biomechanics of the knee and electromyography (EMG) of nine leg muscles was assessed. The ACL injured group was tested before and 10 months after surgery. The perceived knee function and activity level was assessed by questionnaires. The ACL injured group performed the FL significantly slower than the controls before surgery (mean difference: 0.41 s [95%CI: 0.04–0.79 s; p<0.05]) while they performed the FL as fast as the controls after surgery (~28% movement time reduction post-surgery). Perceived knee function and activity level improved significantly post-surgery. The knee joint flexion angle, extensor moment, power, angular velocity in the ACL injured group did not differ from pre to post-surgery. For the ACL injured group, the peak knee extensor moment observed both pre and post-surgery was significantly lower when compared to the controls. The EMG results showed minimal differences. In conclusion, at 10 months post-surgery, the FL was performed significantly faster and the movement time was comparable to that of the controls. While the perceived knee function and activity level improved post-surgery, the knee joint biomechanics were unchanged. This may reflect that knee joint function was not fully restored.

Klíčová slova:

Anterior cruciate ligament reconstruction – Biomechanics – Electromyography – Knee joints – Knees – Musculoskeletal mechanics – Musculoskeletal system – Surgical and invasive medical procedures


1. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment of anterior cruciate ligament injuries, part I. Am J Sports Med. 2005;33(10):1579–602. Epub 2005/10/04. doi: 10.1177/0363546505279913 16199611.

2. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr., et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):2363–70. Epub 2014/08/03. doi: 10.1177/0363546514542796 25086064.

3. Murawski CD, van Eck CF, Irrgang JJ, Tashman S, Fu FH. Operative treatment of primary anterior cruciate ligament rupture in adults. J Bone Joint Surg Am. 2014;96(8):685–94. Epub 2014/04/18. doi: 10.2106/JBJS.M.00196 24740666

4. Delince P, Ghafil D. Anterior cruciate ligament tears: conservative or surgical treatment? A critical review of the literature. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):48–61. Epub 2011/07/21. doi: 10.1007/s00167-011-1614-x 21773828.

5. Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):778–88. Epub 2006/03/10. doi: 10.1007/s00167-006-0045-6 16525796.

6. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med. 2011;45(7):596–606. Epub 2011/03/15. doi: 10.1136/bjsm.2010.076364 21398310.

7. Feller J, Webster KE. Return to sport following anterior cruciate ligament reconstruction. Int Orthop. 2013;37(2):285–90. Epub 2012/11/10. doi: 10.1007/s00264-012-1690-7 23138966; PubMed Central PMCID: PMC3560893.

8. Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49(3):188–95. Epub 2014/02/25. doi: 10.1136/bjsports-2013-092982 24563391.

9. Trulsson A, Miller M, Hansson GA, Gummesson C, Garwicz M. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury. BMC Musculoskelet Disord. 2015;16:28. Epub 2015/04/19. doi: 10.1186/s12891-015-0472-y 25887306; PubMed Central PMCID: PMC4333170.

10. Krafft FC, Stetter BJ, Stein T, Ellermann A, Flechtenmacher J, Eberle C, et al. How does functionality proceed in ACL reconstructed subjects? Proceeding of functional performance from pre- to six months post-ACL reconstruction. PLoS One. 2017;12(5):e0178430. Epub 2017/06/01. doi: 10.1371/journal.pone.0178430 28562674; PubMed Central PMCID: PMC5451139.

11. Alkjaer T, Simonsen EB, Peter Magnusson SP, Aagaard H, Dyhre-Poulsen P. Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers. Clin Biomech (Bristol, Avon). 2002;17(8):586–93. Epub 2002/09/24. doi: 10.1016/s0268-0033(02)00098-0 12243718.

12. Escamilla RF, Zheng N, Macleod TD, Imamura R, Edwards WB, Hreljac A, et al. Cruciate ligament forces between short-step and long-step forward lunge. Med Sci Sports Exerc. 2010;42(10):1932–42. Epub 2010/03/03. doi: 10.1249/MSS.0b013e3181d966d4 20195182.

13. Escamilla RF, Zheng N, MacLeod TD, Imamura R, Edwards WB, Hreljac A, et al. Cruciate ligament tensile forces during the forward and side lunge. Clin Biomech (Bristol, Avon). 2010;25(3):213–21. Epub 2009/12/17. doi: 10.1016/j.clinbiomech.2009.11.003 20004502.

14. Alkjaer T, Wieland MR, Andersen MS, Simonsen EB, Rasmussen J. Computational modeling of a forward lunge: towards a better understanding of the function of the cruciate ligaments. J Anat. 2012;221(6):590–7. Epub 2012/10/13. doi: 10.1111/j.1469-7580.2012.01569.x 23057673; PubMed Central PMCID: PMC3512282.

15. Alkjaer T, Henriksen M, Dyhre-Poulsen P, Simonsen EB. Forward lunge as a functional performance test in ACL deficient subjects: test-retest reliability. Knee. 2009;16(3):176–82. Epub 2008/12/20. doi: 10.1016/j.knee.2008.11.011 19095452.

16. Del Bel MJ, Flaxman TE, Smale KB, Alkjaer T, Simonsen EB, Krogsgaard MR, et al. A hierarchy in functional muscle roles at the knee is influenced by sex and anterior cruciate ligament deficiency. Clin Biomech (Bristol, Avon). 2018;57:129–36. Epub 2018/07/10. doi: 10.1016/j.clinbiomech.2018.06.014 29986275.

17. Flaxman TE, Alkjaer T, Smale KB, Simonsen EB, Krogsgaard MR, Benoit DL. Differences in EMG-moment relationships between ACL-injured and uninjured adults during a weight-bearing multidirectional force control task. J Orthop Res. 2019;37(1):113–23. Epub 2018/09/28. doi: 10.1002/jor.24145 30259562.

18. Smale KB, Alkjaer T, Flaxman TE, Krogsgaard MR, Simonsen EB, Benoit DL. Assessment of objective dynamic knee joint control in anterior cruciate ligament deficient and reconstructed individuals. Knee. 2019;26(3):578–85. Epub 2019/04/08. doi: 10.1016/j.knee.2019.02.013 30954334.

19. Smale KB, Flaxman TE, Alkjaer T, Simonsen EB, Krogsgaard MR, Benoit DL. Anterior cruciate ligament reconstruction improves subjective ability but not neuromuscular biomechanics during dynamic tasks. Knee Surg Sports Traumatol Arthrosc. 2019;27(2):636–45. Epub 2018/10/12. doi: 10.1007/s00167-018-5189-7 30306241.

20. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med. 1982;10(3):150–4. Epub 1982/05/01. doi: 10.1177/036354658201000306 6896798.

21. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600–13. Epub 2001/09/28. doi: 10.1177/03635465010290051301 11573919.

22. Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. Epub 2003/11/14. doi: 10.1186/1477-7525-1-64 14613558; PubMed Central PMCID: PMC280702.

23. Comins JD, Krogsgaard MR, Brodersen J. Development of the Knee Numeric-Entity Evaluation Score (KNEES-ACL): a condition-specific questionnaire. Scand J Med Sci Sports. 2013;23(5):e293–301. Epub 2013/05/21. doi: 10.1111/sms.12079 23683035.

24. Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;(198):43–9. Epub 1985/09/01. 4028566.

25. Mantovani G, Ng KC, Lamontagne M. Regression models to predict hip joint centers in pathological hip population. Gait Posture. 2016;44:48–54. Epub 2016/03/24. doi: 10.1016/j.gaitpost.2015.11.001 27004632.

26. Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):2438–44. Epub 2005/10/08. doi: 10.1016/j.jbiomech.2005.07.021 16209869.

27. Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):62–71. Epub 2001/05/17. doi: 10.1007/s001670000166 11354855.

28. Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc. 2000;8(5):262–9. Epub 2000/11/04. doi: 10.1007/s001670000130 11061293.

29. Nwachukwu BU, Chang B, Voleti PB, Berkanish P, Cohn MR, Altchek DW, et al. Preoperative Short Form Health Survey Score Is Predictive of Return to Play and Minimal Clinically Important Difference at a Minimum 2-Year Follow-up After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2017;45(12):2784–90. Epub 2017/07/21. doi: 10.1177/0363546517714472 28727937.

30. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007;23(1):21–8, 8 e1-3. Epub 2007/01/11. doi: 10.1016/j.arthro.2006.08.024 17210423.

31. Klemetti R, Steele KM, Moilanen P, Avela J, Timonen J. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J Biomech. 2014;47(10):2263–8. Epub 2014/05/31. doi: 10.1016/j.jbiomech.2014.04.052 24873862.

32. Sritharan P, Lin YC, Pandy MG. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J Orthop Res. 2012;30(10):1586–95. Epub 2012/04/03. doi: 10.1002/jor.22082 22467469.

33. Maniar N, Schache AG, Sritharan P, Opar DA. Non-knee-spanning muscles contribute to tibiofemoral shear as well as valgus and rotational joint reaction moments during unanticipated sidestep cutting. Sci Rep. 2018;8(1):2501. Epub 2018/02/08. doi: 10.1038/s41598-017-19098-9 29410451; PubMed Central PMCID: PMC5802728.

34. Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45(1):87–97. Epub 2010/01/13. doi: 10.4085/1062-6050-45.1.87 20064053; PubMed Central PMCID: PMC2808760.

35. Knutson LM, Soderberg GL, Ballantyne BT, Clarke WR. A study of various normalization procedures for within day electromyographic data. J Electromyogr Kinesiol. 1994;4(1):47–59. Epub 1994/01/01. doi: 10.1016/1050-6411(94)90026-4 20870546.

36. Benoit DL, Lamontagne M, Cerulli G, Liti A. The clinical significance of electromyography normalisation techniques in subjects with anterior cruciate ligament injury during treadmill walking. Gait Posture. 2003;18(2):56–63. Epub 2003/12/05. doi: 10.1016/s0966-6362(02)00194-7 14654208.

37. Krogsgaard M. Rotational instability—the major reason for symptoms after knee ligament injury. Scand J Med Sci Sports. 2007;17(2):97–8. Epub 2007/03/31. doi: 10.1111/j.1600-0838.2007.00651.x 17394469.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden