The importance of transporters and cell polarization for the evaluation of human stem cell-derived hepatic cells

Autoři: György Török aff001;  Zsuzsa Erdei aff001;  Julianna Lilienberg aff001;  Ágota Apáti aff001;  László Homolya aff001
Působiště autorů: Molecular Cell Biology Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227751


One of the most promising applications of human pluripotent stem cells is their utilization for human-based pharmacological models. Despite the fact that membrane transporters expressed in the liver play pivotal role in various hepatic functions, thus far only little attention was devoted to the membrane transporter composition of the stem cell-derived liver models. In the present work, we have differentiated HUES9, a human embryonic stem cell line, toward the hepatic lineage, and monitored the expression levels of numerous differentiation marker and liver transporter genes with special focus on ABC transporters. In addition, the effect of bile acid treatment and polarizing culturing conditions on hepatic maturation has been assessed. We found that most transporter genes crucial for hepatic functions are markedly induced during hepatic differentiation; however, as regards the transporter composition the end-stage cells still exhibited dual, hepatocyte and cholangiocyte character. Although the bile acid treatment and sandwich culturing only slightly influenced the gene expressions, the stimulated cell polarization resulted in formation of bile canaliculi and proper localization of transporters. Our results point to the importance of membrane transporters in human stem cell-derived hepatic models and demonstrate the relevance of cell polarization in generation of applicable cellular models with correctly localized transporters. On the basis of our observations we suggest that conventional criteria for the evaluation of the quality of stem cell-derived hepatocyte-like cells ought to be augmented with additional elements, such as polarized and functional expression of hepatic transporters.

Klíčová slova:

Albumins – Bile – Cell differentiation – Gene expression – Hepatocytes – Pluripotency – Secretion – Stem cells


1. Blouin A. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb 1;72(2):441–55. doi: 10.1083/jcb.72.2.441 833203

2. Stieger B, Meier Y, Meier PJ. The bile salt export pump. Pflugers Arch. 2007 Feb;453(5):611–20. doi: 10.1007/s00424-006-0152-8 17051391

3. Telbisz Á, Homolya L. Recent advances in the exploration of the bile salt export pump (BSEP/ABCB11) function. Expert Opin Ther Targets. 2016;20(4):501–14. doi: 10.1517/14728222.2016.1102889 26573700

4. Oude Elferink RPJ, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007 Feb;453(5):601–10. doi: 10.1007/s00424-006-0062-9 16622704

5. Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16237–42. doi: 10.1073/pnas.252582399 12444248

6. Yu L, Gupta S, Xu F, Liverman ADB, Moschetta A, Mangelsdorf DJ, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem. 2005 Mar 11;280(10):8742–7. doi: 10.1074/jbc.M411080200 15611112

7. Hagenbuch B, Stieger B, Foguet M, Lübbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–33. doi: 10.1073/pnas.88.23.10629 1961729

8. Anwer MS, Stieger B. Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflugers Arch. 2014 Jan;466(1):77–89. doi: 10.1007/s00424-013-1367-0 24196564

9. Briz O, Romero MR, Martinez-Becerra P, Macias RIR, Perez MJ, Jimenez F, et al. OATP8/1B3-mediated Cotransport of Bile Acids and Glutathione. J Biol Chem. 2006 Oct 13;281(41):30326–35. doi: 10.1074/jbc.M602048200 16877380

10. Briz O, Serrano MA, MacIas RIR, Gonzalez-Gallego J, Marin JJG. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J. 2003 May 1;371(Pt 3):897–905. doi: 10.1042/BJ20030034 12568656

11. van de Steeg E, Wagenaar E, van der Kruijssen CMM, Burggraaff JEC, de Waart DR, Elferink RPJO, et al. Organic anion transporting polypeptide 1a/1b–knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest. 2010 Aug 2;120(8):2942–52. doi: 10.1172/JCI42168 20644253

12. Cui Y, König J, Leier I, Buchholz U, Keppler D. Hepatic Uptake of Bilirubin and Its Conjugates by the Human Organic Anion Transporter SLC21A6. J Biol Chem. 2001 Mar 30;276(13):9626–30. doi: 10.1074/jbc.M004968200 11134001

13. Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflügers Arch—Eur J Physiol. 2007 Jan 29;453(5):643–59.

14. Sarkadi B, Ozvegy-Laczka C, Német K, Váradi A. ABCG2—a transporter for all seasons. FEBS Lett. 2004 Jun 1;567(1):116–20. doi: 10.1016/j.febslet.2004.03.123 15165903

15. Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev. 2006 Oct 1;86(4):1179–236. doi: 10.1152/physrev.00037.2005 17015488

16. Donner MG, Warskulat U, Saha N, Häussinger D. Enhanced expression of basolateral multidrug resistance protein isoforms Mrp3 and Mrp5 in rat liver by LPS. Biol Chem. 2004 Jan 13;385(3–4):331–9. doi: 10.1515/BC.2004.029 15134348

17. Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology. 2003 Aug;38(2):374–84. doi: 10.1053/jhep.2003.50331 12883481

18. König J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta—Biomembr. 1999 Dec 6;1461(2):377–94.

19. Ros JE. ATP binding cassette transporter gene expression in rat liver progenitor cells. Gut. 2003 Jul 1;52(7):1060–7. doi: 10.1136/gut.52.7.1060 12801967

20. Ros JE, Libbrecht L, Geuken M, Jansen PLM, Roskams TAD. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol. 2003 Aug;200(5):553–60. doi: 10.1002/path.1379 12898590

21. Al-Qubaisi M, Rozita R, Yeap S-K, Omar A-R, Ali A-M, Alitheen NB. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules. 2011 Apr 6;16(4):2944–59. doi: 10.3390/molecules16042944 21471934

22. Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol. 2012 Apr;28(2):69–87. doi: 10.1007/s10565-011-9208-4 22258563

23. Ansede JH, Smith WR, Perry CH, St. Claire RL, Brouwer KR. An In Vitro Assay to Assess Transporter-Based Cholestatic Hepatotoxicity Using Sandwich-Cultured Rat Hepatocytes. Drug Metab Dispos. 2010 Feb 1;38(2):276–80. doi: 10.1124/dmd.109.028407 19910518

24. Rose KA, Holman NS, Green AM, Andersen ME, LeCluyse EL. Co-culture of Hepatocytes and Kupffer Cells as an In Vitro Model of Inflammation and Drug-Induced Hepatotoxicity. J Pharm Sci. 2016 Feb;105(2):950–64. doi: 10.1016/S0022-3549(15)00192-6 26869439

25. Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, et al. Morphological and Functional Characterization and Assessment of iPSC-Derived Hepatocytes for In Vitro Toxicity Testing. Toxicol Sci. 2015 Sep;147(1):39–54. doi: 10.1093/toxsci/kfv117 26092927

26. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013 Jul 3;499(7459):481–4. doi: 10.1038/nature12271 23823721

27. Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Vol. 15, Expert Opinion on Drug Metabolism and Toxicology. Taylor and Francis Ltd; 2019. p. 61–75. doi: 10.1080/17425255.2019.1558207 30526128

28. Erdélyi-Belle B, Török G, Apáti Á, Sarkadi B, Schaff Z, Kiss A, et al. Expression of Tight Junction Components in Hepatocyte-Like Cells Differentiated from Human Embryonic Stem Cells. Pathol Oncol Res. 2015 Sep 7;21(4):1059–70. doi: 10.1007/s12253-015-9936-5 25845432

29. Apáti Á, Orbán TI, Varga N, Németh A, Schamberger A, Krizsik V, et al. High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. Biochim Biophys Acta—Biomembr. 2008;1778(12):2700–9.

30. Erdei Z, Schamberger A, Török G, Szebényi K, Várady G, Orbán TI, et al. Generation of multidrug resistant human tissues by overexpression of the ABCG2 multidrug transporter in embryonic stem cells. PLoS One. 2018;13(4).

31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–75. 14907713

32. Andersen CL, Jensen JL, Ørntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004 Aug 1;64(15):5245–50. doi: 10.1158/0008-5472.CAN-04-0496 15289330

33. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull. 1958;38:1409–38.

34. Øyvind H, David ATH, Paul DR. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron. 2001;4(1):9.

35. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006;50(7):645–52. 16892178

36. Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods. 2011 May;17(5):557–68. doi: 10.1089/ten.TEC.2010.0437 21210720

37. Pettinato G, Ramanathan R, Fisher RA, Mangino MJ, Zhang N, Wen X. Scalable Differentiation of Human iPSCs in a Multicellular Spheroid-based 3D Culture into Hepatocyte-like Cells through Direct Wnt/β-catenin Pathway Inhibition. Sci Rep. 2016 Sep 12;6:32888. doi: 10.1038/srep32888 27616299

38. Freyer N, Knöspel F, Strahl N, Amini L, Schrade P, Bachmann S, et al. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor. Biores Open Access. 2016 Aug;5(1):235–48. doi: 10.1089/biores.2016.0027 27610270

39. Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced Functions of Human Embryonic Stem Cell-derived Hepatocyte-like Cells on Three-dimensional Nanofibrillar Surfaces. Stem Cell Rev Reports. 2010 Dec 7;6(4):601–10.

40. Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, et al. Effects of Ursodeoxycholic and Cholic Acid Feeding on Hepatocellular Transporter Expression in Mouse Liver. Gastroenterology. 2001 Jul;121(1):170–83. doi: 10.1053/gast.2001.25542 11438506

41. Fu D, Wakabayashi Y, Lippincott-Schwartz J, Arias IM. Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci. 2011 Jan 25;108(4):1403–8. doi: 10.1073/pnas.1018376108 21220320

42. Sommerfeld A, Mayer PGK, Cantore M, Häussinger D. Regulation of Plasma Membrane Localization of the Na + -Taurocholate Cotransporting Polypeptide (Ntcp) by Hyperosmolarity and Tauroursodeoxycholate. J Biol Chem. 2015 Oct 2;290(40):24237–54. doi: 10.1074/jbc.M115.666883 26306036

43. Hoffmaster KA, Turncliff RZ, LeCluyse EL, Kim RB, Meier PJ, Brouwer KLR. P-glycoprotein Expression, Localization, and Function in Sandwich-Cultured Primary Rat and Human Hepatocytes: Relevance to the Hepatobiliary Disposition of a Model Opioid Peptide. Pharm Res. 2004 Jul;21(7):1294–302. doi: 10.1023/b:pham.0000033018.97745.0d 15290872

44. Swift B, Brouwer KLR. Influence of seeding density and extracellular matrix on bile Acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm. 2010 Apr 5;7(2):491–500. doi: 10.1021/mp900227a 19968322

45. Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res. 2013 Jan 1;2(1):23–39.

46. Meseguer-Ripolles J, Khetani SR, Blanco JG, Iredale M, Hay DC. Pluripotent Stem Cell-Derived Human Tissue: Platforms to Evaluate Drug Metabolism and Safety. AAPS J. 2018 Jan 21;20(1):20.

47. Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-Molecule-Driven Hepatocyte Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports. 2015 May 12;4(5):939–52. doi: 10.1016/j.stemcr.2015.04.001 25937370

48. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010 May;51(5):1754–65. doi: 10.1002/hep.23506 20301097

49. Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015 Oct 21;7(4):044102. doi: 10.1088/1758-5090/7/4/044102 26486521

50. DeLaForest A, Nagaoka M, Si-Tayeb K, Noto FK, Konopka G, Battle MA, et al. HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development. 2011 Oct 1;138(19):4143–53. doi: 10.1242/dev.062547 21852396

51. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010 Jan;51(1):297–305. doi: 10.1002/hep.23354 19998274

52. Sarkadi B, Orbán TI, Szakács G, Várady G, Schamberger A, Erdei Z, et al. Evaluation of ABCG2 Expression in Human Embryonic Stem Cells: Crossing the Same River Twice? Stem Cells. 2010 Jan;28(1):174–6. doi: 10.1002/stem.262 19924769

53. Apáti Á, Szebényi K, Erdei Z, Várady G, Orbán TI, Sarkadi B. The importance of drug transporters in human pluripotent stem cells and in early tissue differentiation. Expert Opin Drug Metab Toxicol. 2016 Jan 2;12(1):77–92. doi: 10.1517/17425255.2016.1121382 26592535

54. Hurrell T, Segeritz C-P, Vallier L, Lilley KS, Cromarty AD. A proteomic time course through the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Sci Rep. 2019;9(1):3270. doi: 10.1038/s41598-019-39400-1 30824743

55. Kovács T, Máthé D, Fülöp A, Jemnitz K, Bátai-Konczos A, Veres Z, et al. Functional shift with maintained regenerative potential following portal vein ligation. Sci Rep. 2017 Dec 22;7(1):18065. doi: 10.1038/s41598-017-18309-7 29273725

56. Meier F, Freyer N, Brzeszczynska J, Knöspel F, Armstrong L, Lako M, et al. Hepatic differentiation of human iPSCs in different 3D models: A comparative study. Int J Mol Med. 2017 Dec;40(6):1759–71. doi: 10.3892/ijmm.2017.3190 29039463

Článek vyšel v časopise


2020 Číslo 1