Genlisea hawkingii (Lentibulariaceae), a new species from Serra da Canastra, Minas Gerais, Brazil


Autoři: Saura Rodrigues Silva aff001;  Bartosz Jan Płachno aff002;  Samanta Gabriela Medeiros Carvalho aff001;  Vitor Fernandes Oliveira Miranda aff001
Působiště autorů: São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Laboratory of Plant Systematics, Jaboticabal, SP, Brazil aff001;  Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Kraków, Poland aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226337

Souhrn

Genlisea hawkingii, which is a new species of Genlisea subgen. Tayloria (Lentibulariaceae) from cerrado in southwest Brazil, is described and illustrated. This species has been found in only one locality thus far, in the Serra da Canastra, which is located in the Delfinópolis municipality in Minas Gerais, Brazil. The new species is morphologically similar to Genlisea violacea and G. flexuosa, but differs from them in having a corolla with a conical and curved spur along with sepals with an acute apex and reproductive organs that only have glandular hairs. Moreover, it is similar to G. uncinata’s curved spur. G. hawkingii is nested within the subgen. Tayloria clade as a sister group to all the other species of this subgenus. Therefore, both morphological and phylogenetic results strongly support G. hawkingii as a new species in the subgen. Tayloria.

Klíčová slova:

Brazil – Corolla – Flowers – Leaves – New species reports – Phylogenetic analysis – Phylogenetics – Sepals


Zdroje

1. Fleischmann A. Monograph of the Genus Genlisea. Poole, Dorset, England: Redfern Natural History Productions; 2012.

2. Fleischmann A, Costa SM, Bittrich V, Amaral MDCE do, Hopkins M. A new species of corkscrew plant (Genlisea, Lentibulariaceae) from the Amazon lowlands of Brazil, including a key to all species occurring north of the Amazon River. 2017;319: 289–297.

3. APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181: 1–20. doi: 10.1111/boj.12385

4. Fleischmann A, Michael TP, Rivadavia F, Sousa A, Wang W, Temsch EM, et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot. 2014;114: 1651–1663. doi: 10.1093/aob/mcu189 25274549

5. Fromm-Trinta E. Tayloria Fromm-Trinta. Nova seção do gênero Genlisea St.-Hil. (Lentibulariaceae). Bol do Mus Nac do Rio Janeiro—série Botânica. 1977;44: 1–4.

6. Fischer E, Porembski S, Barthlott W. Revision of the genus Genlisea (Lentibulariaceae) in Africa and Madagascar with notes on ecology and phytogeography. Nord J Bot. 2000;20: 291–318. doi: 10.1111/j.1756-1051.2000.tb00746.x

7. Fleischmann A, Schäferhoff B, Heubl G, Rivadavia F, Barthlott W, Müller KF. Phylogenetics and character evolution in the carnivorous plant genus Genlisea. Mol Phylogenet Evol. 2010;56: 768–783. doi: 10.1016/j.ympev.2010.03.009 20226867

8. BFG. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia. 2018;69: 1513–1527. doi: 10.1590/2175-7860201869402

9. Jardim Botânico do Rio de Janeiro. Flora do Brasil 2020 under construction. 2019. Available: http://floradobrasil.jbrj.gov.br/

10. Fleischmann A, Rivadavia F, Gonella PM, Heubl G. A revision of Genlisea subgenus Tayloria (Lentibulariaceae). Phytotaxa. 2011;40: 1–40.

11. Thiers BM. (continously updated) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. 2019. Available: http://sweetgum.nybg.org/ih/

12. Oxelman B, Lidén M, Berglund D. Chloroplast rpsl6 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol. 1997;206: 393–410.

13. Chase MW, Cowan RS, Hollingsworth PM, Van Den Berg C, Madriñán S, Petersen G, et al. A proposal for a standardised protocol to barcode all land plants. Taxon. 2007; 56: 295–299.

14. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41: 95–98. citeulike-article-id:691774

15. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 23329690

16. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. doi: 10.1093/bioinformatics/btu033 24451623

17. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogeny. Bioinformatics. 2001;17: 754–5. doi: 10.1093/bioinformatics/17.8.754 11524383

18. Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models, new heuristics and parallel computing. Nature Methods. 2012. doi: 10.1038/nmeth.2109 22847109

19. Akaike H. Information theory and an extension of the maximum likelihood principle. Int Symp Inf Theory. 1973; 267–281. doi: 10.1016/j.econlet.2011.12.027

20. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008;57: 758–71. doi: 10.1080/10635150802429642 18853362

21. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010. New Orleans; 2010. pp. 1–8. doi: 10.1109/GCE.2010.5676129

22. Müller J, Müller K. TREEGRAPH: Automated drawing of complex tree figures using an extensible tree description format. Mol Ecol Notes. 2004;4: 786–788. doi: 10.1111/j.1471-8286.2004.00813.x

23. IUCN. The IUCN Red List of Threatened Species. Version 2019–2. 2019. Available: http://www.iucnredlist.org

24. Wang Q, Li Y, Pu X, Zhu L, Tang Z, Liu Q. Pollinators and nectar robbers cause directional selection for large spur circle in Impatiens oxyanthera (Balsaminaceae). Plant Syst Evol. 2013; 299: 1263–1274. doi: 10.1007/s00606-013-0794-x

25. Aranguren Y, Płachno BJ, Stpiczyńska M, Miranda VFO. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae). Plant Biol. 2018; 20: 591–601. doi: 10.1111/plb.12683 29266665

26. Agnarsson I, Miller JA. Is ACCTRAN better than DELTRAN? Cladistics. 2008; 24: 1032–1038. doi: 10.1111/j.1096-0031.2008.00229.x

27. Silva SR, Michael TP, Meer EJ, Pinheiro DG, Varani AM, Miranda VFO. Comparative genomic analysis of Genlisea (corkscrew plants—Lentibulariaceae) chloroplast genomes reveals an increasing loss of the ndh genes. PLoS ONE. 2018; 13(1): e0190321. doi: 10.1371/journal.pone.0190321 29293597


Článek vyšel v časopise

PLOS One


2020 Číslo 1