#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Bioreactor for mobilization of mesenchymal stem/stromal cells into scaffolds under mechanical stimulation: Preliminary results


Autoři: Carolina Gamez aff001;  Barbara Schneider-Wald aff001;  Andy Schuette aff001;  Michael Mack aff001;  Luisa Hauk aff001;  Arif ul Maula Khan aff002;  Norbert Gretz aff002;  Marcus Stoffel aff003;  Karen Bieback aff004;  Markus L. Schwarz aff001
Působiště autorů: Department for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre (OUZ), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany aff001;  Medical Research Centre (ZMF), Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany aff002;  Institute of General Mechanics, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany aff003;  Institute of Transfusion Medicine and Immunology, FlowCore Mannheim, German Red Cross Blood Service of Baden Württemberg-Hessen, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Baden Württemberg, Germany aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227553

Souhrn

Introduction

Articular cartilage (AC) is a viscoelastic tissue with a limited regenerative capability because of the lack of vasculature. Mechanical stimulation contributes to the homeostasis of functional AC since it promotes the delivery of nutrients, cytokines and growth factors between the distant chondrocytes. We hypothesized that biomechanical stimulation might enhance mobilization of endogenous mesenchymal stem/stromal cells (MSCs) from neighboring niches as the bone marrow.

Aim

This study aimed to introduce a bioreactor for inducing mobilization of MSCs from one compartment to another above by mechanical stimulation in vitro.

Methods

A novel mechanical system for evaluating mobilization of cells in a 3D context in vitro is presented. The system consists of a compression bioreactor able to induce loading on hydrogel-based scaffolds, custom-made software for settings management and data recording, and image based biological evaluation. Intermittent load was applied under a periodic regime with frequency of 0.3 Hz and unload phases of 10 seconds each 180 cycles over 24 hours. The mechanical stimulation acted on an alginate scaffold and a cell reservoir containing MSCs below it. The dynamic compression exerted amplitude of 200 μm as 10% strain regarding the original height of the scaffold.

Results

The bioreactor was able to stimulate the scaffolds and the cells for 24.4 (±1.7) hours, exerting compression with vertical displacements of 185.8 (±17.8) μm and a force-amplitude of 1.87 (±1.37; min 0.31, max 4.42) N. Our results suggest that continuous mechanical stimulation hampered the viability of the cells located at the cell reservoir when comparing to intermittent mechanical stimulation (34.4 ± 2.0% vs. 66.8 ± 5.9%, respectively).

Functionalizing alginate scaffolds with laminin-521 (LN521) seemed to enhance the mobilization of cells from 48 (±21) to 194 (±39) cells/mm3 after applying intermittent mechanical loading.

Conclusion

The bioreactor presented here was able to provide mechanical stimulation that seemed to induce the mobilization of MSCs into LN521-alginate scaffolds under an intermittent loading regime.

Klíčová slova:

Cartilage – Cell viability testing – Compression – Chondrocytes – Mesenchymal stem cells – Pistons – Skeletal joints – Tissue repair


Zdroje

1. Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J Dev Biol. 2015;3(4):177–92. doi: 10.3390/jdb3040177 27347486

2. Armiento AR, Stoddart MJ, Alini M, Eglin D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018;65:1–20. doi: 10.1016/j.actbio.2017.11.021 29128537

3. Pouran B, Arbabi V, Bajpayee AG, van Tiel J, Toyras J, Jurvelin JS, et al. Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech. 2018;78:10–20. doi: 10.1016/j.jbiomech.2018.06.012 30093067

4. Mouw JK, Connelly JT, Wilson CG, Michael KE, Levenston ME. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells. 2007;25(3):655–63. doi: 10.1634/stemcells.2006-0435 17124008

5. Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. Tissue Eng Part B Rev. 2018;24(5):345–58. doi: 10.1089/ten.TEB.2018.0006 29562835

6. Jeon JE, Schrobback K, Hutmacher DW, Klein TJ. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthritis Cartilage. 2012;20(8):906–15. doi: 10.1016/j.joca.2012.04.019 22548797

7. Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. Tissue Eng Part B Rev. 2017;23(4):399–411. doi: 10.1089/ten.TEB.2016.0427 28463576

8. Shahin K, Doran PM. Shear and Compression Bioreactor for Cartilage Synthesis. Methods in molecular biology (Clifton, NJ). 2015;1340:221–33.

9. Weber JF, Perez R, Waldman SD. Mechanobioreactors for Cartilage Tissue Engineering. Methods in molecular biology (Clifton, NJ). 2015;1340:203–19.

10. Lee JK, Huwe LW, Paschos N, Aryaei A, Gegg CA, Hu JC, et al. Tension stimulation drives tissue formation in scaffold-free systems. Nat Mater. 2017;16(8):864–73. doi: 10.1038/nmat4917 28604717

11. Elder BD, Athanasiou K.A. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration. Tissue Eng Part B. 2009;15(1).

12. Anderson DE, Johnstone B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review. Front Bioeng Biotechnol. 2017;5:76. doi: 10.3389/fbioe.2017.00076 29322043

13. Darling E.M., Athanasiou KA. Articular Cartilage Bioreactors and Bioprocesses. Tissue Eng 2003;9(1).

14. Jacobi M, Villa V, Magnussen RA, Neyret P. MACI—a new era? Sports Med Arthrosc Rehabil Ther Technol. 2011;3(1):10. doi: 10.1186/1758-2555-3-10 21599919

15. Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol. 2018;233(3):1913–28. doi: 10.1002/jcp.26018 28542924

16. Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regenerative Medicine. 2012;7(6):833–50. doi: 10.2217/rme.12.82 23164083

17. Karagianni MS T.J.; Bieback K. Towards Clinical Application of Mesenchymal Stromal Cells: Perspectives and Requirements for Orthopaedic Applications. In: Davies J, editor. Tissue Regeneration From Basic Biology to Clinical Application. London, UK IntechOpen; 2012.

18. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009;266(4):390–405. doi: 10.1111/j.1365-2796.2009.02153.x 19765182

19. Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods in molecular biology (Clifton, NJ). 2011;698:253–78.

20. Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet. 2016;7:213. doi: 10.3389/fgene.2016.00213 28066501

21. Stoffel M, Willenberg W, Azarnoosh M, Fuhrmann-Nelles N, Zhou B, Markert B. Towards bioreactor development with physiological motion control and its applications. Med Eng Phys. 2017;39:106–12. doi: 10.1016/j.medengphy.2016.10.010 27836574

22. Gamez C, Khan A.M., Torelli A., Schneider-Wald, B., Gretz N., Wolf I., Bieback K., Schwarz ML. Image processing workflow to visualize and quantify MSCs in 3D. German Congress of Orthopedic and Trauma Surgery (DKOU 2018); November 6, 2018; Berlin: German Medical Science; 2018.

23. Im GI. Endogenous Cartilage Repair by Recruitment of Stem Cells. Tissue Eng Part B Rev. 2016;22(2):160–71. doi: 10.1089/ten.TEB.2015.0438 26559963

24. Coleman JL, Widmyer MR, Leddy HA, Utturkar GM, Spritzer CE, Moorman CT 3rd, et al. Diurnal variations in articular cartilage thickness and strain in the human knee. J Biomech. 2013;46(3):541–7. doi: 10.1016/j.jbiomech.2012.09.013 23102493

25. Sanchez-Adams J, Leddy HA, McNulty AL, O'Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451. doi: 10.1007/s11926-014-0451-6 25182679

26. Nebelung S, Gavenis K, Luring C, Zhou B, Mueller-Rath R, Stoffel M, et al. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Ann Anat. 2012;194(4):351–8. doi: 10.1016/j.aanat.2011.12.008 22429869

27. Steinmeyer J, Knue S. The Proteoglycan Metabolism of Mature Bovine Articular Cartilage Explants Superimposed to Continuously Applied Cyclic Mechanical Loading. Biochem Biophys Res Commun. 1997;240:216–21. doi: 10.1006/bbrc.1997.7641 9367913

28. Sauerland K, Raiss RX, Steinmeyer J. Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis and Cartilage. 2003;11(5):343–50. doi: 10.1016/s1063-4584(03)00007-4 12744940

29. Rodin S, Antonsson L, Niaudet C, Simonson OE, Salmela E, Hansson EM, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195. doi: 10.1038/ncomms4195 24463987

30. Wang N, Adams G, Buttery L, Falcone FH, Stolnik S. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol. 2009;144(4):304–12. doi: 10.1016/j.jbiotec.2009.08.008 19686786

31. Markert CD, Guo X, Skardal A, Wang Z, Bharadwaj S, Zhang Y, et al. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J Mech Behav Biomed Mater. 2013;27:115–27. doi: 10.1016/j.jmbbm.2013.07.008 23916408

32. Chen YS, Chen YY, Hsueh YS, Tai HC, Lin FH. Modifying alginate with early embryonic extracellular matrix, laminin, and hyaluronic acid for adipose tissue engineering. J Biomed Mater Res A. 2016;104(3):669–77. doi: 10.1002/jbm.a.35606 26514819

33. Walther M, Altenberger S, Kriegelstein S, Volkering C, Roser A. Reconstruction of focal cartilage defects in the talus with miniarthrotomy and collagen matrix. Oper Orthop Traumatol. 2014;26(6):603–10. doi: 10.1007/s00064-012-0229-9 24898391

34. Steadman JR, Rodkey WG, Briggs KK. Microfracture: Its History and Experience of the Developing Surgeon. Cartilage. 2010;1(2):78–86. doi: 10.1177/1947603510365533 26069538

35. Torzilli P.A.; Grigiene R. Continuous cyclic load reduces proteoglycan release from articular cartilage. Osteoarthritis and Cartilage 1998;6:260–8. doi: 10.1053/joca.1998.0119 9876395

36. Lucchinetti E, Adams CS, Horton WE Jr., Torzilli PA. Cartilage viability after repetitive loading: a preliminary report. Osteoarthritis Cartilage. 2002;10(1):71–81. doi: 10.1053/joca.2001.0483 11795985

37. Steinmeyer J, Knue S., Raiss R.H., Pelzer I. Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Ostheoarthritis and Cartilage. 1999;7:155–64.

38. Sauerland K, Steinmeyer J. Intermittent mechanical loading of articular cartilage explants modulates chondroitin sulfate fine structure. Osteoarthritis Cartilage. 2007;15(12):1403–9. doi: 10.1016/j.joca.2007.05.004 17574451

39. Bonzani IC, Campbell JJ, Knight MM, Williams A, Lee DA, Bader DL, et al. Dynamic compressive strain influences chondrogenic gene expression in human periosteal cells: a case study. J Mech Behav Biomed Mater. 2012;11:72–81. doi: 10.1016/j.jmbbm.2011.06.015 22658156

40. Nachtsheim J, Dursun G, Markert B, Stoffel M. Chondrocyte migration in an acellular tissue-engineered cartilage substitute. PAMM. 2018;18(1).

41. Dursun G, Markert B, Stoffel M. Experimental Study on Cell-free Approach for Articular Cartilage Treatment. Current Directions in Biomedical Engineering. 2019;5(1):171–4.

42. Nachtsheim J, Dursun G, Markert B, Stoffel M. Chondrocyte colonisation of a tissue-engineered cartilage substitute under a mechanical stimulus. Med Eng Phys. 2019;74:58–64. doi: 10.1016/j.medengphy.2019.09.022 31611181

43. Ode A, Kopf J, Kurtz A, Schmidt-Bleek K, Schrade P, Kolar P, et al. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. European Cells and Materials. 2011;22:26–42. doi: 10.22203/ecm.v022a03 21732280

44. Matziolis G, Tuischer J., Kasper G., Thompson M., Bartmeyer B., Krocker D., Perka C., Duda G. Simulation of Cell Differentiation in Fracture Healing: Mechanically Loaded Composite Scaffolds in a Novel Bioreactor System. Tissue Eng. 2006;12(1).

45. Niemeyer P, Becher C, Brucker PU, Buhs M, Fickert S, Gelse K, et al. [Significance of Matrix-augmented Bone Marrow Stimulation for Treatment of Cartilage Defects of the Knee: A Consensus Statement of the DGOU Working Group on Tissue Regeneration]. Z Orthop Unfall. 2018;156(5):513–32. doi: 10.1055/a-0591-6457 29913540


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#