Photocatalytic biocidal effect of copper doped TiO2 nanotube coated surfaces under laminar flow, illuminated with UVA light on Legionella pneumophila

Autoři: Martina Oder aff001;  Tilen Koklič aff002;  Polona Umek aff002;  Rok Podlipec aff002;  Janez Štrancar aff002;  Martin Dobeic aff004
Působiště autorů: Department of Sanitary Engineering, University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia aff001;  Laboratory of Biophysics, “Jožef Stefan” Institute, Ljubljana, Slovenia aff002;  Helmholz Zentrum Dresden Rossendorf, Ion Beam Center, Dresden, Germany aff003;  Institute of Food Safety Feed and Environment, University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Legionella pneumophila can cause a potentially fatal form of humane pneumonia (Legionnaires’ disease), which is most problematic in immunocompromised and in elderly people. Legionella species is present at low concentrations in soil, natural and artificial aquatic systems and is therefore constantly entering man-made water systems. The environment temperature for it’s ideal growth range is between 32 and 42°C, thus hot water pipes represent ideal environment for spread of Legionella. The bacteria are dormant below 20°C and do not survive above 60°C. The primary method used to control the risk from Legionella is therefore water temperature control. There are several other effective treatments to prevent growth of Legionella in water systems, however current disinfection methods can be applied only intermittently thus allowing Legionella to grow in between treatments. Here we present an alternative disinfection method based on antibacterial coatings with Cu-TiO2 nanotubes deposited on preformed surfaces. In the experiment the microbiocidal efficiency of submicron coatings on polystyrene to the bacterium of the genus Legionella pneumophila with a potential use in a water supply system was tested. The treatment thus constantly prevents growth of Legionella pneumophila in presence of water at room temperature. Here we show that 24-hour illumination with low power UVA light source (15 W/m2 UVA illumination) of copper doped TiO2 nanotube coated surfaces is effective in preventing growth of Legionella pneumophila. Microbiocidal effects of Cu-TiO2 nanotube coatings were dependent on the flow of the medium and the intensity of UV-A light. It was determined that tested submicron coatings have microbiocidal effects specially in a non-flow or low-flow conditions, as in higher flow rates, probably to a greater possibility of Legionella pneumophila sedimentation on the coated polystyrene surfaces, meanwhile no significant differences among bacteria reduction was noted regarding to non or low flow of medium.

Klíčová slova:

Flow rate – Laminar flow – Legionella pneumophila – Light – Nanomaterials – Polystyrene – Water resources – Nanotubes


1. Falkinham JO III., Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Persp. 2015a; 123(8): 749.

2. Burke AC, Burillo A, Bouza E. Legionnaries’ disease. The Lancet 2016 Jan 23–29; 10016(387): 376–85.

3. Völker S, Schreiber C, Kistemann T. Modelling characteristics to predict Legionella contamination risk–Surveillance of drinking water plumbing systems and identification of risk areas. International Int J Hyg Envir Heal. 2016 Jan; 219(1): 101–9.

4. Williams MW, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. Biofouling. 2013 Jan 17; (29)2: 147–62. doi: 10.1080/08927014.2012.757308 23327332

5. Barna Z, Kádár M, Kálmán E, Scheirich Szax A, Vargha M. Prevalence of Legionella in premise plumbing in Hungary. Wat Res. 2016 Mar 1; 90: 71–8.

6. Declerck P. Biofilms: the environmental playground of Legionella pneumophila (Minireview) Environ Microbiol.2010 Mar; 1(3): 557–566.

7. Falkinham JO III, Pruden A, Edwards M. Opportunistic premise plumbing pathogens: increasingly important pathogens in drinking water (Review). Pathogens. 2015b Apr 1; 4(2): 373–86.

8. Wang H, Bédard E, Prévost M, K.Camper A, R.Hill V, Prudene A. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review. Wat Res. 2017 Jun;117: 68–86.

9. Wang H, Edwards AM, Falkinham JO III, Pruden A. Probiotic approach to pathogen control in premise plumbing systems? Environ Sci Technol. 2013 Sep 17; 47 (18): 10117–28. doi: 10.1021/es402455r 23962186

10. Park S, Hun Park H, Ko YS, Lee SJ, Le TS, Woo K, et al. Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Sci Total Environ. 2017 Dec 31; 609: 289–96. doi: 10.1016/j.scitotenv.2017.07.071 28753503

11. Van der Kooij D, Bakker GL, Italiaander R, Veenendaal HR, Wullings BA. Biofilm composition and threshold concentration for growth of Legionella pneumophila on surfaces exposed to flowing warm tap water without disinfectant. Appl Environ Microbiol. 2017 Jan 6; 83: e02737–16. doi: 10.1128/AEM.02737-16 28062459

12. Farhat M, Moletta-Denat M, Frère J, Onillon S, Trouilhé MC, Robine E. Effects of disinfection on Legionella spp., eukarya, and biofilms in a hot water system. Appl Environ Microb. 2012 Sept 5; 78(19): 6850–8.

13. EPA US Environmental Protection Agency. Technologies for Legionella Control in Premise Plumbing Systems: Scientific Literature Review. 20161–125.

14. Proctor CR, Dai D, Edwards MA, Pruden A. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome. 2017 Oct 4; 5:1–130. doi: 10.1186/s40168-016-0209-7

15. Oder M, Kompare B, Bohinc, Godič Torkar K. The impact of material surface roughness and temperature on the adhesion of Legionella pneumophila to contact surfaces. Int J Environ Heal R. 2015 Mar 9; 25(5): 469–79.

16. Stout JE, Muder RR, Mietzner S, Wagener MM, Perri MB, DeRoos K, et al. Role of environmental surveillance in determining the risk of hospital‐acquired legionellosis: A national surveillance study with clinical correlations. Infect Control Hosp Epidemiol. 2007 Jul; 28: 818–824. doi: 10.1086/518754 17564984

17. McCoy WF, Rosenblatt AA. HACCP-based programs for preventing disease and injury from premise plumbing: A building consensus. Pathogens. 2015 Mar 31; 4(3): 513–28. doi: 10.3390/pathogens4030513 26184325

18. Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, et al. Risk-based critical concentrations of Legionella pneumophila for indoor residential water uses. Environ Sci Technol 2019 Apr 16; 53(8): 4528–41. doi: 10.1021/acs.est.8b03000 30629886

19. Moritz MM, Flemming HC, Wingender J. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Envir Heal. 2010 Jun; 213(3): 190–7.

20. Szabo J, Minamyer S. Decontamination of biological agents from drinking water infrastructure: A literature review and summary. Environ Int. 2014 Feb 16; 74: 124–8.

21. Meier T, Bendinger B. Survival of pathogens in drinking water plumbing systems: Impact factors and sanitation options. Water Sci Technol. 2016 Avg. 1; 16(4): 931–41.

22. Rhoads WJ, Pruden A, Edwards MA. Convective mixing in distal pipes exacerbates Legionella pneumophila growth in hot water plumbing. Pathogens. 2016 Mar 12; 5(1): 1–29.

23. Wang H, Masters S, Hong Y, Stallings J, Falkinha JO III, Edwards MA, et al. Effect of disinfectant, water age, and pipe material on occurrence and persistence of Legionella, mycobacteria, Pseudomonas aeruginosa, and two Amoebas. Environ Sci Technol. 2012 Nov 6; 46 (21): 11566–74. doi: 10.1021/es303212a 23046164

24. Shen Y, Huang C, Lin J, Wu W, Ashbolt NJ, Liu WT, Nguyen TH. Effect of disinfectant exposure on Legionella pneumophila associated with simulated drinking water biofilms: release, inactivation, and infectivity. Environ Sci Technol 2017 Feb 21; 51 (4): 2087–95. doi: 10.1021/acs.est.6b04754 28085262

25. Dupuy M, Mazoua S, Berne F, Bodet C, Garrec N, Herbelin P, et al. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Wat Res. 2011 Jan; 45(3): 1087–94.

26. Rodrigues PAF, Geraldes MJ, Belino NJ. Legionella: Bioactive nano-filters for air purification systems. 1st Portuguese Biomedical Engineering Meeting. 2011 Mar 1–4. Lisbon, Portugal, 2011.

27. Türetgen I. Reduction of microbial biofilm formation using hydrophobic nano-silica coating on cooling tower fill material. Water SA. 2015 Apr 15; 41(3): 295–9.

28. Koklič T, Pintarič Š, Zdovc I, Golob M, Umek P, Mehle A, et al. Photocatalytic disinfection of surfaces with copper doped Ti02 nanotube coatings illuminated by ceiling mounted fluorescent light. PLoS One. 2018a May 16; 13(5): e0197308.

29. Koklič T, Urbančič I, Zdovc I, Golob M, Umek P, Arsov Z, et al. Surface deposited one-dimensional copper-doped TiO2 nanomaterials for prevention of health care acquired infections. PLoS One. 2018b Jul 26; 13(7): e0201490.

30. Garvas M, Testen A, Umek P, Gloter A, Koklič T, Štrancar J. Protein corona prevents TiO2 phototoxicity. PLoS One. 2015 Jun 17; 10(6): 1–17.

31. Rasband W. National Institutes of Health, USA,

32. Bazaka K, Crawford RJ, Ivanova EP. Do bacteria differentiate between degrees of nanoscale surface roughness? Biotechnol J. 2011 Sept 6; 6: 1103–1114. doi: 10.1002/biot.201100027 21910258

33. ISO 11731:1998. Water quality–Detection and enumeration of Legionella.

34. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA. Role of surface/interfacial Cu2+ Sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposite, J Phys Chem C. 2008 Nov 7; 112: 19040–19044.

35. Li J, Mayer JW. Oxidation and reduction of copper oxide thin films, Mater Chem Phys. 1992 Jul; 32: 1–24.

36. Umek P, Pregelj M, Gloter A, Cevc P, Jagličić Z, Čeh M et al. Coordination of intercalated Cu2+ sites in copper doped sodium titanate nanotubes and nanoribbons. J Phys Chem C. 2008 Sept 5; 112: 15311–15319.

37. Correia AM, Ferreira JS, Borges V, Nunes A, Gomes B, Capucho R, et al. Probable person-to-person transmission of Legionnaires’ disease. N Engl J Med. 2016 Feb 4; 374: 497–498. doi: 10.1056/NEJMc1505356 26840151

38. Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 2010 May; 31: 3674–3683. doi: 10.1016/j.biomaterials.2010.01.071 20163851

39. Drinking water and human health. What is the water flow rate to most fixtures in my house? [Cited 2019 Nov 20]. Available from:

40. European technical guidelines for the prevention, control and investigation of infections caused by Legionella species. European Centre for Disease Prevention and Control. [Cited 2019 Nov 20]. Available from:

41. Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol. 2009 Oct; 12(5): 482–489. doi: 10.1016/j.mib.2009.06.018 19647477

42. Ja I. Pathways of oxidative damage. Annu Rev Microbiol. 2003 Jun 4; 57: 395–418. doi: 10.1146/annurev.micro.57.030502.090938 14527285

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden