Best compromise nutritional menus for childhood obesity


Autoři: Paul Bello aff001;  Pedro Gallardo aff001;  Lorena Pradenas aff001;  Jacques A. Ferland aff002;  Victor Parada aff003
Působiště autorů: Departamento de Ingeniería Industrial, Universidad de Concepción, Concepción, Chile aff001;  Département d’Informatique et Recherche Opérationnelle, Université de Montréal, Montréal, Canada aff002;  Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0216516

Souhrn

Childhood obesity is an undeniable reality that has rapidly increased in many countries. Obesity at an early age not only increases the risks of chronic diseases but also produces a problem for the whole healthcare system. One way to alleviate this problem is to provide each patient with an appropriate menu that is defined by a mathematical model. Existing mathematical models only partially address the objective and constraints of childhood obesity; therefore, the solutions provided are insufficient for health specialists to prepare nutritional menus for individual patients. This manuscript proposes a multiobjective mathematical programming model to aid in healthy nutritional menu planning that may prevent childhood obesity. This model provides a plan for combinations and amounts of food across different schedules and daily meals. This approach minimizes the major risk factors of childhood obesity (i.e., glycemic load and cholesterol intake). In addition, this approach considers the minimization of nutritional mismatch and total cost. The model is solved using a deterministic method and two metaheuristic methods. Test instances associated with children aged 4–18 years were created with the support of health professionals to complete this numerical study. The quality of the solutions generated using the three methods was similar, but the metaheuristic methods provided solutions in a shorter computational time. These results are submitted to statistical hypothesis tests to be validated. The numerical results indicate proper guidelines for personalized plans for individual children.

Klíčová slova:

Diet – Fatty acids – Food consumption – Childhood obesity – Medical risk factors – Milk – Nutrition – Optimization


Zdroje

1. Daniels SR. The consequences of childhood overweight and obesity. The Future of Children. 2006; 16(1): 47–67. doi: 10.1353/foc.2006.0004 16532658

2. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. The Lancet. 2002; 360(9331):473–482. https://doi.org/10.1016/S0140-6736(02)09678-2

3. Lake A, Townshend T. Obesogenic environments: exploring the built and food environments. The Journal of the Royal Society for the Promotion of Health. 2006; 126(6): 262–267. doi: 10.1177/1466424006070487 17152319

4. Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A Review of the Literature. Preventive Medicine. 1993; 22(2):167–177. doi: 10.1006/pmed.1993.1014 8483856

5. WHO | Facts and figures on childhood obesity. (s. f.). Retrieved April 11th, 2019, http://www.who.int/end-childhood-obesity/facts/en/

6. Koroušić B. Dietary menu planning using an evolutionary method. In International Conference on Intelligent Engineering Systems, 2006. INES ‘06. Proceedings p. 108–113. https://doi.org/10.1109/INES.2006.1689351 (2006).

7. Stigler GJ. The Cost of subsistence. Journal of Farm Economics. 1945; 27(2):303–314. https://doi.org/10.2307/1231810

8. Dantzig G. The Diet problem. Interfaces. 1990; 20(4):43–47. https://doi.org/10.1287/inte.20.4.43

9. Bas E. A robust optimization approach to diet problem with overall glycemic load as objective function. Applied Mathematical Modelling. 2014; 38(19–20): 4926–4940. https://doi.org/10.1016/j.apm.2014.03.049

10. Orešković P, Kljusurić JG, Šatalić Z. Computer-generated vegan menus: The importance of food composition database choice. Journal of Food Composition and Analysis. 2015; 37: 112–118. https://doi.org/10.1016/j.jfca.2014.07.002

11. Masset G, Monsivais P, Maillot M, Darmon N, Drewnowski A. Diet optimization methods can help translate dietary guidelines into a cancer prevention food plan. The Journal of Nutrition. 2009; 139(8): 1541–1548. doi: 10.3945/jn.109.104398 19535422

12. Okubo H, Sasaki S, Murakami K, Yokoyama T, Hirota N, Notsu A. et al. Designing optimal food intake patterns to achieve nutritional goals for Japanese adults through the use of linear programming optimization models. Nutrition Journal. 2015; 14(57): 1–10. https://doi.org/10.1186/s12937-015-0047-7

13. Briend A, Darmon N, Ferguson E, Erhardt JG. Linear programming: a mathematical tool for analyzing and optimizing children’s diets during the complementary feeding period. Journal of Pediatric Gastroenterology and Nutrition. 2003; 36(1): 12–22. doi: 10.1097/00005176-200301000-00006 12499991

14. Sufahani S, Ismail Z. A new menu planning model for malaysian secondary schools using optimization Approach. Applied Mathematical Sciences. 2014; 8(151):7511–7518. https://doi.org/10.12988/ams.2014.49725

15. Koroušić B. Computer-based dietary menu planning. Journal of Food Composition and Analysis. 2009; 22(5): 414–420. https://doi.org/10.1016/j.jfca.2009.02.006

16. Donati M, Menozzi D, Zighetti C, Rosi A, Zinetti A, Scazzina F. Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite 2016; 106 (C): 48–57. https://doi.org/10.1016/j.appet.2016.02.151

17. Van Mierlo K, Rohmer S, Gerdessen JC. A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. Journal of Cleaner Production. 2017; 165(C): 930–950. https://doi.org/10.1016/j.jclepro.2017.07.098

18. Ludwig DS. Dietary glycemic index and obesity. The Journal of Nutrition. 2000; 130(2): 280S–283S.

19. Talbi EG. Metaheuristics: From design to implementation. New Jersey: John Wiley & Sons; 2009

20. Cohon JL. Multiobjective programming and planning. New York: Dover Publications; 2004.

21. GAMS Documentation Center. (s. f.). Retrieved April 11th, 2019, https://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fsolvers%2Fcplex%2Findex.html

22. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002; 6(2):182–197. https://doi.org/10.1109/4235.996017

23. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. In Giannakoglou K, Tsahalis D, Périaux J, Papailiou K, Fogarty T. editors. In Proceedings fo the Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. p. 95–100, Athens; 2002.

24. Coello CC, Lamont GB, Veldhuizen DA. Evolutionary algorithms for aolving multi-objective problems. 2nd ed. New York: Springer; 2007.

25. Reeves CR. Genetic algorithms. In Handbook of Metaheuristics. Boston: Springer, 2010; p. 109–139. https://doi.org/10.1007/978-1-4419-1665-5_5

26. <b>Nojima Y, Narukawa K, Kaige S, Ishibuchi H. Effects of removing overlapping solutions on the performance of the NSGA-II algorithm. In Coello CC, Aguirre AH, Zitzler E. editors, Evolutionary Multi-Criterion Optimization; Berlin: Springer; 2005. p. 341–354. https://doi.org/10.1007/978-3-540-31880-4_24

27. Montgomery D. Design and Analysis of Experiments. 8th ed. New York: McGraw-Hill; 2012.

28. Dunteman George H, Introduction to multivariate analysis. Chapter 5 covers classification procedures and discriminant analysis. Thousand Oaks, CA: Sage Publications. 1984

29. Lehmann E L, Romano J P, Casella G, Testing statistical hypotheses, 150, Wiley New York et al., 1986.


Článek vyšel v časopise

PLOS One


2020 Číslo 1