Neandertals on the beach: Use of marine resources at Grotta dei Moscerini (Latium, Italy)

Autoři: Paola Villa aff001;  Sylvain Soriano aff004;  Luca Pollarolo aff003;  Carlo Smriglio aff006;  Mario Gaeta aff007;  Massimo D’Orazio aff008;  Jacopo Conforti aff009;  Carlo Tozzi aff009
Působiště autorů: Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America aff001;  Istituto Italiano di Paleontologia Umana, Rome, Italy aff002;  School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa aff003;  ArScAn, AnTET, CNRS, Maison de l’Archéologie et de l’Ethnologie, Université Paris Nanterre, France aff004;  Laboratoire Archéologie et Peuplement de l’Afrique, University of Geneva, Genève, Switzerland aff005;  Dipartimento di Scienze, Università Roma, Roma, Italy aff006;  Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Rome, Italy aff007;  Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy aff008;  Dipartimento Civiltá e Forme del Sapere, Università di Pisa, Pisa, Italy aff009
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Excavated in 1949, Grotta dei Moscerini, dated MIS 5 to early MIS 4, is one of two Italian Neandertal sites with a large assemblage of retouched shells (n = 171) from 21 layers. The other occurrence is from the broadly contemporaneous layer L of Grotta del Cavallo in southern Italy (n = 126). Eight other Mousterian sites in Italy and one in Greece also have shell tools but in a very small number. The shell tools are made on valves of the smooth clam Callista chione. The general idea that the valves of Callista chione were collected by Neandertals on the beach after the death of the mollusk is incomplete. At Moscerini 23.9% of the specimens were gathered directly from the sea floor as live animals by skin diving Neandertals. Archaeological data from sites in Italy, France and Spain confirm that shell fishing and fresh water fishing was a common activity of Neandertals, as indicated by anatomical studies recently published by E. Trinkaus. Lithic analysis provides data to show the relation between stone tools and shell tools. Several layers contain pumices derived from volcanic eruptions in the Ischia Island or the Campi Flegrei (prior to the Campanian Ignimbrite mega-eruption). Their rounded edges indicate that they were transported by sea currents to the beach at the base of the Moscerini sequence. Their presence in the occupation layers above the beach is discussed. The most plausible hypothesis is that they were collected by Neandertals. Incontrovertible evidence that Neandertals collected pumices is provided by a cave in Liguria. Use of pumices as abraders is well documented in the Upper Paleolithic. We prove that the exploitation of submerged aquatic resources and the collection of pumices common in the Upper Paleolithic were part of Neandertal behavior well before the arrival of modern humans in Western Europe.

Klíčová slova:

Archaeological dating – Archaeology – Lithic technology – Neanderthals – Paleoanthropology – Stratigraphy – Teeth – Pumice


1. Tozzi C. La grotta di Sant’Agostino (Gaeta). Rivista di Scienze Preistoriche 1970; 25: 3–87.

2. Stiner MC. Honor among thieves: A zooarchaeological study of Neanderthal ecology. Princeton: Princeton University Press; 1994.

3. Kuhn SL Mousterian lithic technology. Princeton: Princeton University Press; 1995.

4. Vitagliano S. Nota sul Pontiniano della Grotta dei Moscerini, Gaeta (Latina). Atti della XXIV Riunione Scientifica dell’Istituto Italiano di Preistoria e Protostoria, Firenze, 1984; pp. 155–164.

5. Schwarcz HP, Byhay W, Grün R, Stiner M, Kuhn S, Miller GH. Absolute dating of sites in coastal Lazio. Quaternaria Nova 1990–1991; 1: 51–67.

6. Marra F, Bahain JJ, Brian J, Nomade S, Palladino DM, Pereira A, et al. Reconstruction of the MIS 5.5, 5.3 and 5.1 coastal terraces in Latium (central Italy): A re-evaluation of the sea-level history in the Mediterranean Sea during the last interglacial. Quat Int. 2019; 525: 54–77.

7. Villa P, Soriano S, Grün R, Marra F, Nomade S, Pereira A, et al. The Acheulian and Early Middle Paleolithic in Latium (Italy): Stability and Innovation. PLoS One 2016; 11(8): e0160516, pp. 1–54. doi: 10.1371/journal.pone.0160516 27525705

8. Soriano S, Villa P. Early Levallois and the beginning of the Middle Paleolithic in central Italy. PLoS ONE. 2017; 2, e0186082.

9. Degano I, Soriano S, Villa P, Pollarolo L, Lucejko JJ, Jacobs Z, et al. Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves. PLOS ONE 2019; 14, e0213473. doi: 10.1371/journal.pone.0213473 31220106

10. Kelly PA. Roundness in river and beach pebbles: a review of recent research with some implications for schools’ fieldwork. Geography 1983; 68: 25–30.

11. Porraz G. Les pièces amincies de la Baume des Peyrards (Massif du Luberon, Vaucluse): analyse des procédés de réalisation. Préhistoires Méditerranéennes 2002; 10–11: 27–38.

12. Turq A, Dibble H, Faivre JP, Goldberg P, McPherron S, Sandgathe D. Le Moustérien du Périgord Noir: quoi de neuf. In: Les Sociétés Paléolithiques d’un Grand Sud-Ouest: Nouveaux Gisements, Nouvelles Méthodes, Nouveaux Résultats, Mémoires de la Société Préhistorique Française 2008; Paris, pp. 83–94.

13. Gravina B, Discamps E. MTA-B or not to be? Recycled bifaces and shifting hunting strategies at Le Moustier and their implication for the late Middle Palaeolithic in southwestern France. J Hum Evol. 2015; 84: 83–98. doi: 10.1016/j.jhevol.2015.04.005 25976251

14. Peresani M, Boldrin M, Pasetti P. Assessing the exploitation of double patinated artifacts from the Late Mousterian: Implications for lithic economy and human mobility in northern Italy. Quat Int. 2015; 361: 238–250.

15. Romagnoli F. A second life: recycling production waste during the Middle Palaeolithic in layer L at Grotta del Cavallo (Lecce, Southeast Italy). Quat Int. 2015; 361: 200–211.

16. Vaquero M, Bargalló A, Chacón MG, Romagnoli F. Sañudo P. Lithic recycling in a Middle Paleolithic expedient context: evidence from the Abric Romaní (Capellades, Spain). Quat Int. 2015; 361: 212–228.

17. Lawn BR, Swain MV. Microfracture beneath point indentations in brittle solids. J Mater Sci 1975; 10: 113–122.

18. Cotterell B, Kamminga J. The Formation of Flakes. Am Antiq 1987; 52: 675–708.

19. Ashton N, Dean P, McNabb J. Flaked flakes: what, when and why? Lithics–The Journal of the Lithic Studies Society 1991; 12: 1–11.

20. Tixier J, Turq A. Kombewa et alii. Paléo 1999; 11: 135–144.

21. Conard NJ, Bolus M, Münzel SC. Middle Paleolithic land use, spatial organization and settlement intensity in the Swabian Jura, southwestern Germany. Quat Int. 2012; 247: 236–245.

22. Moncel M-H, Moigne A-M, Combier J. Towards the Middle Palaeolithic in Western Europe: The case of Orgnac 3 (southeastern France). J Hum Evol. 2012; 63: 653–666. doi: 10.1016/j.jhevol.2012.08.001 23040107

23. Douka K, Spinapolice E. Neanderthal shell tool production: evidence from Middle Palaeolithic Italy and Greece. J. World Prehist. 2012; 25: 45–79.

24. Romagnoli F, Martini F, Sarti L. Neanderthal use of Callista chione shells as raw material for retouched tools in South-east Italy: Analysis of Grotta del Cavallo layer L assemblage with a new methodology. J Archaeol Method Theory 2014; 22: 1007–1037. New York: Springer Science and Business Media. doi: 10.1007/s10816-014-9215-x

25. Romagnoli F, Baena J, Pardo Naranjo AI, Sarti L. Evaluating the performance of the cutting edge of Neanderthal shell tools: A new experimental approach. Use, mode of operation, and strength of Callista chione from a behavioural, Quina perspective. Quat Int. 2017; 427: 216–228.

26. Colonese AC, Mannino MA, Bar-Yosef Mayer DE, Fa DA, Finlayson JC, Lubell D, et al. Marine mollusk exploitation in Mediterranean prehistory: An overview. Quat Int. 2011; 239: 86–103.

27. Baeta M, Ramón M, Galimany E. Decline of a Callista chione (Bivalvia: Veneridae) bed in the Maresme coast (northwestern Mediterranean sea). Ocean & Coast. Manag. 2014; 93: 15–25.

28. Vasconcelos P., Morgado-André A., Morgado-André C, Gaspar MB. Shell strength and fishing damage to the smooth clam (Callista chione): simulating impacts caused by bivalve dredging. ICES J. Mar. Sci. 2011; 68(1): 32–42.

29. Hoffman JS, Clark P.U., Parnell A.C., Feng He. Regional and global sea-surface temperatures during the last interglaciation. Science 2017; 355 (6322): 276–279. doi: 10.1126/science.aai8464 28104887

30. Zanchetta G, Giaccio B, Bini M, Sarti L. Tephrostratigraphy of Grotta del Cavallo, Southern Italy: Insights on the chronology of Middle to Upper Palaeolithic transition in the Mediterranean. Quat Sci Rev. 2018; 182: 65–77.

31. Parsons KM, Brett CE. Taphonomic processes and biases in moderm marine environments: an actualistic perspective on fossil preservation, in Donovan S. (Ed.) The processes of fossilization. New York: Columbia University Press; 1991. pp. 22–64.

32. Gaspar MB, Dias MD, Campos A, Monteiro CC, Santo MN, Chícharo A, et al. The influence of dredge design on the catch of Callista chione (Linnaeus, 1758). Hydrobiologia 2001; 465: 153–167.

33. Ezgeta-Balic´ D, Peharda M, Richardson CA, Kuzmanic M, Vrgoc N, Isajlovi I. Age, growth, and population structure of the smooth clam Callista chione in the eastern Adriatic Sea. Helgoland Marine Research 2011; 65: 457–465. doi: 10.1007/s10152-010-0235-y

34. Turolla E. Atlante dei bivalvi dei mercati italiani. Grafiche Adriatica, Taglio di Po, 2007. 95 pp.

35. Trinkaus E, Samsel M, Villotte S. External auditory exostoses among western Eurasian late Middle and Late Pleistocene humans. PLoS ONE 2019; 14(8): 0220464.

36. Verhaegen M, Munro S. Pachyosteosclerosis Suggests Archaic Homo Frequently Collected Sessile Littoral Foods. HOMO 2011; 62:237–247. doi: 10.1016/j.jchb.2011.06.002 21741646

37. Verhaegen M. The Aquatic Ape Evolves: Common Misconceptions and Unproven Assumptions About the So-Called Aquatic Ape Hypothesis. Hum Evol 2013; 28 (no. 3–4): 237–266.

38. Cassoli PF, Tagliacozzo A. Avifauna e ittiofauna di Grotta di Castelcivita: considerazioni ecologiche ed inquadramento crono-stratigrafico. In: Gambassini P. (Ed.) Il Paleolitico di Castelcivita- culture e ambiente. Napoli: Electa Napoli; 1997. pp. 60–74.

39. Hardy BL, Moncel M-H. Neanderthal Use of Fish, Mammals, Birds, Starchy Plants and Wood 125–250,000 Years Ago. PLoS One 2011; 6(8), e23768. doi: 10.1371/journal.pone.0023768 21887315

40. Hardy BL, Moncel MH, Daujeard C, Fernandes P, Béarez P, Desclaux E et al. Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France). Quat Sci Rev. 2013; 82: 23–40.

41. Bocherens H, Baryshnikov G, Van Neer W. Were bears or lions involved in salmon accumulation in the Middle Palaeolithic of the Caucasus? An isotopic investigation in Kudaro 3 cave. Quat Int 2014; 339–340: 112–118.

42. Stringer CB, Finlayson JC, Barton RNE, Fernández-Jalvo Y, Cáceres I, Sabin R C, et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc Natl Acad Sci USA. 2008; 105: 14319–14324. doi: 10.1073/pnas.0805474105 18809913

43. Cortés-Sánchez M, Morales-Muñiz A, Simón-Vallejo MD, Lozano-Francisco MC, Vera-Peláz JL, Finlayson C, et al. Earliest known use of marine resources by Neanderthals. PLoS ONE 2011; 6, e24026. doi: 10.1371/journal.pone.0024026 21935371

44. Cortés-Sanchez M, Simon-Vallejo MD, Jiménez-Espejo FJ, Lozano Francisco MC, Vera-Peláez JL, Maestro González A, et al. Shellfish collection on the westernmost Mediterranean, Bajondillo cave (~160–35 cal kyr BP): A case of behavioral convergence? Quat Sci Rev. 2019; 217: 284–196.

45. Averbouh A, Cleyet-Merle JJ. Hameçons, in Averbouh A., Bellier C., Billamboz P., Cattelain P., et al. (Eds.) Fiches typologiques de l’industrie osseuse préhistorique, Cahier VII, Ėléments barbelés et apparentés. Editions du Cedarc, Treignes, 1995. pp.83–100.

46. Breuil H. Découverte par M. l’abbé Glory de débris de corde paléolithique à la grotte de Lascaux (Dordogne). Comptes rendus des séances de l’Académie des Inscriptions et Belles-Lettres 1955; 99, 194–194.

47. Adovasio JM, Soffer O, Klíma B. Upper Palaeolithic fibre technology: interlaced woven finds from Pavlov I, Czech Republic, c. 26,000 years ago. Antiquity 1996; 70: 526–534.

48. Marean CW. The origin and significance of coastal resources in Africa and Westrn Eurasia. J Hum Evol. 2014; 77, 17–40. doi: 10.1016/j.jhevol.2014.02.025 25498601

49. Klein RG, Bird DW. Shellfishing and human evolution. J Anthropo. Archaeol. 2016; 44: 198–205.

50. Prieur A. Les coquillages du Paléolithique à l'âge du Bronze au Moyen-Orient et en Méditerranée orientale: interprétations environnementales et utilisation humaine. Paléorient 2005; 31 (1): 158–168.

51. Glover EA, Taylor JD. Needles and pins: acicular crystalline periostracal calcification in venerid bivalves (Bivalvia: Veneridae). J Molluscan Stud 2010; 76: 157–179.

52. Cristiani E, Lemorini C, Martini F, Sarti L. Scrapers of Callista chione from Grotta del Cavallo (Middle Palaeolithic cave in Apulia): evaluating use-wear potential. In: Luik, H., Choyke, A.M., Batey, C.E., Lõugas, L. (Eds.), From Hooves to Horns, from Mollusc to Mammoth—Manufacture and Use of Bone Artefacts from Prehistoric Times to the Present. Procedings of the 4th meeting of the ICAZ Worked bone Research Group at Tallin. 2005. p. 319–324.

53. Joordens JCA, d’Errico F, Wesseling FP, Munro S, de Vos J, Wallinga J. et al. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 2015; 518: 228–231. doi: 10.1038/nature13962 25470048

54. Choi K, Driwantoro D. Shell tool use by early members of Homo erectus in Sangiran, central Java, Indonesia: cut-mark evidence. J Archaeol Sci. 2007; 34: 48–58.

55. Cuenca-Solana D, Gutierrez-Zugasti I, Ruiz-Redondo A, Gonzalez-Morales MR, Setien J, Ruiz-Martínez E, et al. Painting Altamira Cave? Shell tools for ochre-processing in the Upper Palaeolithic in northern Iberia. J Archaeol Sci. 2016; 74: 135–171.

56. Cuenca-Solana D, Gutierrez-Zugasti F, Gonzalez-Morales MR, Setien-Marquinez J, Ruiz-Martínez E, García-Moreno A, et al. Shell technology, rock art, and the role of marine resources during the Upper Paleolithic. Curr Anthropol. 2013; 4 (3): 370–380.

57. Cuenca-Solana D. The Use of Shells by Hunter-Fisher-Gatherers and Farmers from the Early Upper Palaeolithic to the Neolithic in the European Atlantic Façade: A Technological Perspective. Journal of Island and Coastal Archaeology 2015; 10 (1), 52–75. doi: 10.1080/15564894.2014.934491

58. Vigie B, Courtin J. Les outils sur coquilles marines dans le Neolithique du Midi de la France. Mesogée, Bulletin du Museum d’histoire naturelle de Marseille 1986; 46: 51–61.

59. Szabó K, Brumm A, Bellwood P. Shell Artefact Production at 32,000–28,000 BP in Island Southeast Asia. Curr Anthropol. 2007; 48 (5): 701–723.

60. Vicino G. La spiaggia tirreniana dei Balzi Rossi nei recenti scavi nella zona dell’ex-Casinó. Atti della XVI Riunione Scientifica Istituto Italiano di Preistoria e Protostoria, 1974; 75–84.

61. Oxilia M. Nota sulla presenza di industria su valve di Meretrix chione Linneo nei livelli Riss-Würm dello scavo dell’ex-Casinó. Atti XVI Riunione Scientifica Istituto Italiano di Preistoria e Protostoria, 1974; 84–90.

62. Romagnoli F, Baena J, Sarti L. Neanderthal retouched shell tools and Quina economic and technical strategies: An integrated behavior. Quat Int. 2016; 407: 29–44.

63. Dantoni G. I livelli musteriani con strumenti su valve di Callista (Callista) Chione (L.) nel Salento. Studi per l’Ecologia del Quaternario 1980; 2: 67–76.

64. Borzatti von Löwenstern E, Magaldi D. Ultime ricerche nella Grotta dell’Alto (S. Caterina-Nardó). Rivista di Scienze Preistoriche 1967; XXII (2): 205–250.

65. Dantoni G, Nardi N. 1980. La Grotta riparo “Marcello Zei”(Santa Caterina, Nardò). Studi per l’Ecologia del Quaternario 2: 97–119.

66. Darlas A. Le Mousterien de Grèce à la lumière des récentes recherches. L’Anthropologie 2007;111: 346–366.

67. Le Maitre R W, Streckeisen A, Zanettin B, Le Bas M J, Bonin B, & Bateman P. (Eds.). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, 2005.

68. Giaccio B, Niespolo EM, Pereira A, Nomade S, Renne PR, Albert PG, et al. First integrated tephrochronological record for the last ~190 kyr from the Fucino Quaternary lacustrine succession, central Italy. Quat Sci Rev. 2017; 158: 211–234.

69. Tomlinson EL, Albert PG, Wulf S, Brown RJ, Smith VC, Keller J, et al. Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. J Volcanol Geotherm Res. 2014; 287: 22–39.

70. Giaccio B, Hajdas I, Isaia R, Deino A, Nomade S. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Nature Scientific Reports 2017; 7: 45940. doi: 10.1038/srep45940 28383570

71. Bathrellos G, Vasilatos C, Skilodimou H, Stamatakis MG. On the occurrence of a pumice-rich layer in Holocene deposits of western Peloponnesus, Ionian Sea. A geomorphological and geochemical approach. Central European Journal of Geosciences 2009; 1 (1): 19–32.

72. Bailey GN, Flemming NC Archaeology of the continental shelf: Marine resources, submerged landscapes and underwater archaeology. Quat Sci Rev. 2008; 27: 2153–2165.

73. Tozzi C. Scavi nella Grotta di Santa Lucia (Toirano). Rivista di Studi Liguri 1962; XXVI: 221–242.

74. Dachary M, Deniel C, Plassard F, Boivin P, Devidal JL. Textural and geochemical analysis of a pumice polisher with grooves from the Magdalenian site of Duruthy (Sorde, Landes, France).Paléo 2012; 23: 315–322.

75. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. A chemical classification of volcanic rocks based on the total alkali—silica diagram. Journal of Petrology 1986; 27: 745–750.

76. Civetta l, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M. Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 1997; 75: 183–219.

77. Pappalardo L, Civetta L, D'Antonio M, Deinio A, Di Vito M, Orsi G, et al. Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. Journal of Volcanology and Geothermal Research 1999; 91: 141–166.

78. Crisci GM, De Francesco AM, Mazzuoli R, Poli G, Stanzione D. Geochemistry of recent volcanics of Ischia Island, Italy: Evidences for fractional crystallization and magma mixing. Chem Geol 1989; 78: 15–33.

79. Poli S, Chiesa S, Gillot P-Y, Gregnanin A, Guichard F. Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): evidence of successive magmatic cycles. Contrib Mineral Petrol 1987; 95: 322–335.

80. Gillot P-Y, Chiesa S, Pasquarè G, Vezzoli L. < 33,000-yr K-Ar dating of the volcano-tectonic horst of the Isle of Ischia, Gulf of Naples. Nature 1982; 299: 242–245.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden