Evaluation and validation of 2D biomechanical models of the knee for radiograph-based preoperative planning in total knee arthroplasty


Autoři: Malte Asseln aff001;  Jörg Eschweiler aff002;  Adam Trepczynski aff003;  Philipp Damm aff003;  Klaus Radermacher aff001
Působiště autorů: Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany aff001;  Department of Orthopaedics, Aachen University Clinic, RWTH Aachen University, Aachen, Germany aff002;  Julius Wolff Institute, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227272

Souhrn

Thorough preoperative planning in total knee arthroplasty is essential to reduce implant failure by proper implant sizing and alignment. The “gold standard” in conventional preoperative planning is based on anterior-posterior long-leg radiographs. However, the coronal component alignment is still an open discussion in literature, since studies have reported contradictory outcomes on survivorship, indicating that optimal individual alignment goals still need to be defined. Two-dimensional biomechanical models of the knee have the potential to predict joint forces and, therefore, objectify therapy planning. Previously published two-dimensional biomechanical models were evaluated and validated for the first time in this study by comparison of model predictions to corresponding in vivo measurements obtained from telemetric implants for a one- and two-leg stance. Model input parameters were acquired from weight-bearing anterior-posterior long-leg radiographs and statistical assumptions for patient-specific model adaptation. The overall time from initialization to load prediction was in the range of 7–8 minutes per patient for all models. However, no model could accurately predict the correct trend of knee joint forces over patients. Two dimensional biomechanical models of the knee have the potential to improve preoperative planning in total knee arthroplasty by providing additional individual biomechanical information to the surgeon. Although integration into the clinical workflow might be performed with acceptable costs, the models’ accuracy is insufficient for the moment. Future work is needed for model optimization and more sophisticated modelling approaches.

Klíčová slova:

Body weight – Hip – Knee joints – Knees – Ligaments – Medical implants – Skeletal joints – Total knee arthroplasty


Zdroje

1. Ettinger M, Claassen L, Paes P, Calliess T. 2D versus 3D templating in total knee arthroplasty. Knee. 2016; 23: 149–151. doi: 10.1016/j.knee.2015.08.014 26765862

2. Wirtz DC. AE-Manual der Endoprothetik. Knie. Berlin, Heidelberg: Arbeitsgemeinschaft Endoprothetik; 2011.

3. Abdel MP, Oussedik S, Parratte S, Lustig S, Haddad FS. Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Joint J. 2014; 96-B: 857–862. doi: 10.1302/0301-620X.96B7.33946 24986936

4. Kuster MS. Factors affecting polyethylene wear in total knee arthroplasty. Orthopedics. 2002; 25: S235. 11866159

5. Naudie D, Ammeen DJ, Engh GA, Rorabeck CH. Wear and osteolysis around total knee arthroplasty. Journal of the American Academy of Orthopaedic Surgeons. 2007; 15: 53–64. doi: 10.5435/00124635-200701000-00006 17213382

6. Schroer WC, Berend KR, Lombardi AV, Barnes CL, Bolognesi MP, Berend ME, et al. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty. 2013; 28: 116–119. doi: 10.1016/j.arth.2013.04.056 23954423

7. Halder A, Kutzner I, Graichen F, Heinlein B, Beier A, Bergmann G. Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. J Bone Joint Surg Am. 2012; 94: 1023–1029. doi: 10.2106/JBJS.K.00927 22637208

8. Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Joint J. 2017; 99-B: 779–787. doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1 28566397

9. Verstraete MA, Meere PA, Salvadore G, Victor J, Walker PS. Contact forces in the tibiofemoral joint from soft tissue tensions: Implications to soft tissue balancing in total knee arthroplasty. J Biomech. 2017; 58: 195–202. doi: 10.1016/j.jbiomech.2017.05.008 28579262

10. Fang DM, Ritter MA, Davis KE. Coronal alignment in total knee arthroplasty: just how important is it. J Arthroplasty. 2009; 24: 39–43. doi: 10.1016/j.arth.2009.04.034 19553073

11. Kim Y-H, Park J-W, Kim J-S, Park S-D. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop. 2014; 38: 379–385. doi: 10.1007/s00264-013-2097-9 24173677

12. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, et al. Tibial Component Failure Mechanisms in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research. 2004; 428: 26–34. doi: 10.1097/01.blo.0000148578.22729.0e 15534515

13. Jeffery R, Morris R, Denham R. Coronal alignment after total knee replacement. Bone & Joint Journal. 1991; 73-B: 709–714.

14. Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clinical Orthopaedics and Related Research. 2012; 470: 45–53. doi: 10.1007/s11999-011-1936-5 21656315

15. Bonner TJ, Eardley WGP, Patterson P, Gregg PJ. The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years. J Bone Joint Surg Br. 2011; 93: 1217–1222. doi: 10.1302/0301-620X.93B9.26573 21911533

16. Morgan SS, Bonshahi A, Pradhan N, Gregory A, Gambhir A, Porter ML. The influence of postoperative coronal alignment on revision surgery in total knee arthroplasty. Int Orthop. 2008; 32: 639–642. doi: 10.1007/s00264-007-0391-0 17611758

17. Heller MO, Schröder JH, Matziolis G, Sharenkov A, Taylor WR, Perka C, et al. Muskuloskeletale Belastungsanalysen. Biomechanische Erklärung klinischer Resultate—und mehr. Orthopade. 2007; 36: 188, 190–4.

18. Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J Biomech. 2012; 45: 474–483. doi: 10.1016/j.jbiomech.2011.11.052 22209313

19. Perillo-Marcone A, Taylor M. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. J Biomech Eng. 2007; 129: 1–11. doi: 10.1115/1.2401177 17227092

20. Freeman MAR, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech. 2005; 38: 197–208. doi: 10.1016/j.jbiomech.2004.02.006 15598446

21. Marra MA, Vanheule V, Fluit R, Koopman, Bart H F J M, Rasmussen J, Verdonschot N, et al. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J Biomech Eng. 2015; 137: 20904. doi: 10.1115/1.4029258 25429519

22. Hefzy MS, Grood ES. Review of Knee Models. Appl. Mech. Rev. 1988; 41: 1. doi: 10.1115/1.3151876

23. Maquet PG, Pelzer GA. Evolution of the maximum stress in osteo-arthritis of the knee. J Biomech. 1977; 10: 107–117. doi: 10.1016/0021-9290(77)90074-4 858709

24. Kettelkamp DB, Chao EY. A method for quantitative analysis of medial and lateral compression forces at the knee during standing. Clinical Orthopaedics and Related Research. 1972; 83: 202–213. doi: 10.1097/00003086-197203000-00037 5014814

25. Minns RJ. Forces at the knee joint: anatomical considerations. J Biomech. 1981; 14: 633–643. doi: 10.1016/0021-9290(81)90089-0 7334046

26. Richard HA, Kullmer G, Nöcker D. Biomechanik. Grundlagen und Anwendungen auf den menschlichen Bewegungsapparat; [mit 15 Tabellen]. Wiesbaden: Springer Vieweg; 2013.

27. van Eijden TM, de Boer W, Weijs WA. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J Biomech. 1985; 18: 803–809. doi: 10.1016/0021-9290(85)90055-7 4066722

28. Winter DA. Biomechanics and motor control of human movement. 4th ed. Hoboken, N.J: Wiley; 2009.

29. Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A, et al. Standardized loads acting in knee implants. PLoS One. 2014; 9: e86035. doi: 10.1371/journal.pone.0086035 24465856

30. Stylianou AP, Guess TM, Kia M. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions. J Biomech Eng. 2013; 135: 41008. doi: 10.1115/1.4023982 24231902

31. Guess TM, Stylianou AP, Kia M. Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait. J Biomech Eng. 2014; 136: 210321–210329. doi: 10.1115/1.4026359 24389997

32. Chen Z, Zhang X, Ardestani MM, Wang L, Liu Y, Lian Q, et al. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts. Proc Inst Mech Eng H. 2014; 228: 564–575. doi: 10.1177/0954411914537476 24878735

33. Lin Y-C, Walter JP, Pandy MG. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait. Ann Biomed Eng. 2018; 46: 1216–1227. doi: 10.1007/s10439-018-2026-6 29671152

34. Eskinazi I, Fregly BJ. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling. Med Eng Phys. 2018; 54: 56–64. doi: 10.1016/j.medengphy.2018.02.002 29487037

35. Eschweiler J, Asseln M, Damm P, Quack V, Rath B, Bergmann G, et al. Evaluation of biomechanical models for therapy planning of total hip arthroplasty—direct comparison of computational results with in vivo measurements. Z Orthop Unfall. 2014; 152: 603–615. doi: 10.1055/s-0034-1383221 25531522

36. Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010; 43: 2164–2173. doi: 10.1016/j.jbiomech.2010.03.046 20537336

37. Bargren JH, BLAHA JD, Freeman MA. Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clinical Orthopaedics and Related Research. 1983: 178–183.

38. Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clinical Orthopaedics and Related Research. 1990: 215–227.

39. Herzog W, Longino D, Clark A. The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg. 2003; 388: 305–315. doi: 10.1007/s00423-003-0402-6 14504930

40. Meere PA, Schneider SM, Walker PS. Accuracy of Balancing at Total Knee Surgery Using an Instrumented Tibial Trial. J Arthroplasty. 2016; 31: 1938–1942. doi: 10.1016/j.arth.2016.02.050 27369302

41. Robinson M, Eckhoff DG, Reinig KD, Bagur MM, Bach JM. Variability of Landmark Identification in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research. 2006; 442: 57–62. doi: 10.1097/01.blo.0000197081.72341.4b 16394739

42. Bender A, Bergmann G. Determination of typical patterns from strongly varying signals. Comput Methods Biomech Biomed Engin. 2012; 15: 761–769. doi: 10.1080/10255842.2011.560841 21722048

43. Jonsson E, Seiger Å, Hirschfeld H. One-leg stance in healthy young and elderly adults: a measure of postural steadiness. Clinical biomechanics. 2004; 19: 688–694. doi: 10.1016/j.clinbiomech.2004.04.002 15288454


Článek vyšel v časopise

PLOS One


2020 Číslo 1