Human lung epithelial BEAS-2B cells exhibit characteristics of mesenchymal stem cells

Autoři: Xiaoyan Han aff001;  Tao Na aff001;  Tingting Wu aff001;  Bao-Zhu Yuan aff001
Působiště autorů: Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, China aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227174


BEAS-2B was originally established as an immortalized but non-tumorigenic epithelial cell line from human bronchial epithelium. Because of general recognition for its bronchial epithelial origin, the BEAS-2B cell line has been widely used as an in vitro cell model in a large variety of studies associated with respiratory diseases including lung carcinogenesis. However, very few studies have discussed non-epithelial features of BEAS-2B cells, especially the features associated with mesenchymal stem cells (MSCs), which represent a group of fibroblast-like cells with limited self-renewal and differentiation potential to various cell lineages. In this study, we compared BEAS-2B with a human umbilical cord-derived MSCs (hMSCs) cell line, hMSC1, which served as a representative of hMSCs in terms of expressing common features of hMSCs. It was observed that both BEAS-2B and hMSC1 shared the same expression profile of surface markers of hMSCs and exhibited similar osteogenic and adipogenic differentiation potential. In addition, like hMSC1, the BEAS-2B cell line exhibited suppressive activities on proliferation of mitogen-activated total T lymphocytes as well as Th1 lymphocytes, and IFNγ-induced expression of IDO1, all thus demonstrating that BEAS-2B cells exhibited an almost identical characteristic profile with hMSCs, even though, there was a clear difference between BEAS-2B and hMSCs in the effects on type 2 macrophage polarization. Most importantly, the hMSCs features of BEAS-2B were unlikely a consequence of epithelial-mesenchymal transition. Therefore, this study provided a set of evidence to provoke reconsideration of epithelial origin of BEAS-2B.

Klíčová slova:

Adipocyte differentiation – Cell differentiation – Cultured fibroblasts – Epithelial cells – Flow cytometry – Lymphocytes – Macrophages – Mesenchymal stem cells


1. Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, et al. Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988;48(7):1904–9. Epub 1988/04/01. 2450641.

2. Veljkovic E, Jiricny J, Menigatti M, Rehrauer H, Han W. Chronic exposure to cigarette smoke condensate in vitro induces epithelial to mesenchymal transition-like changes in human bronchial epithelial cells, BEAS-2B. Toxicol In Vitro. 2011;25(2):446–53. Epub 2010/11/26. doi: 10.1016/j.tiv.2010.11.011 21095227.

3. Park YH, Kim D, Dai J, Zhang Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis. Toxicol Appl Pharmacol. 2015;287(3):240–5. Epub 2015/06/21. doi: 10.1016/j.taap.2015.06.008 26091798.

4. Pattarayan D, Sivanantham A, Krishnaswami V, Loganathan L, Palanichamy R, Natesan S, et al. Tannic acid attenuates TGF-beta1-induced epithelial-to-mesenchymal transition by effectively intervening TGF-beta signaling in lung epithelial cells. J Cell Physiol. 2017;233(3):2513–25. Epub 2017/08/05. doi: 10.1002/jcp.26127 28771711.

5. Jiao D, Wong CK, Tsang MS, Chu IM, Liu D, Zhu J, et al. Activation of Eosinophils Interacting with Bronchial Epithelial Cells by Antimicrobial Peptide LL-37: Implications in Allergic Asthma. Sci Rep. 2017;7(1):1848. Epub 2017/05/14. doi: 10.1038/s41598-017-02085-5 28500314.

6. Ha MH, Ham SY, Lee DH, Choi J. In vitro toxicity assay using human bronchial epithelial cell, Beas-2B, for the screening of toxicological risk of dioxin-like compounds sampled from small sized Korean waste incineration plants. Chemosphere. 2007;70(1):20–8. doi: 10.1016/j.chemosphere.2007.07.055 17850846.

7. Vergaro V, Aldieri E, Fenoglio I, Marucco A, Carlucci C, Ciccarella G. Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites. Toxicology in vitro: an international journal published in association with BIBRA. 2016;34:171–8. doi: 10.1016/j.tiv.2016.04.003 27075777.

8. Vallabani NV, Mittal S, Shukla RK, Pandey AK, Dhakate SR, Pasricha R, et al. Toxicity of graphene in normal human lung cells (BEAS-2B). Journal of biomedical nanotechnology. 2011;7(1):106–7. doi: 10.1166/jbn.2011.1224 21485826.

9. Cabrera-Benitez NE, Parotto M, Post M, Han B, Spieth PM, Cheng WE, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med. 2012;40(2):510–7. doi: 10.1097/CCM.0b013e31822f09d7 21926573.

10. Sharma RR, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion. 2014;54(5):1418–37. doi: 10.1111/trf.12421 24898458.

11. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Frontiers in immunology. 2013;4:201. doi: 10.3389/fimmu.2013.00201 24027567.

12. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Bioscience reports. 2015;35(2). doi: 10.1042/BSR20150025 25797907.

13. Paino F, La Noce M, Giuliani A, De Rosa A, Mazzoni S, Laino L, et al. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clinical science. 2017;131(8):699–713. doi: 10.1042/CS20170047 28209631.

14. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature reviews Immunology. 2008;8(9):726–36. doi: 10.1038/nri2395 19172693.

15. Matsuno K, Harada N, Harada S, Takeshige T, Ishimori A, Itoigawa Y, et al. Combination of TWEAK and TGF-beta1 induces the production of TSLP, RANTES, and TARC in BEAS-2B human bronchial epithelial cells during epithelial-mesenchymal transition. Experimental lung research. 2018;44(7):332–43. doi: 10.1080/01902148.2018.1522558 30676129.

16. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7. doi: 10.1080/14653240600855905 16923606.

17. Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 2016;18(2):151–9. doi: 10.1016/j.jcyt.2015.11.008 26724220.

18. Yuan BZ. Establishing a Quality Control System for Stem Cell-Based Medicinal Products in China. Tissue engineering Part A. 2015;21(23–24):2783–90. doi: 10.1089/ten.TEA.2014.0498 25471126.

19. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell stem cell. 2013;13(4):392–402. doi: 10.1016/j.stem.2013.09.006 24094322.

20. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature immunology. 2014;15(11):1009–16. doi: 10.1038/ni.3002 25329189.

21. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem cell research & therapy. 2010;1(1):2. doi: 10.1186/scrt2 20504283.

22. Gornostaeva A, Andreeva E, Buravkova L. Factors governing the immunosuppressive effects of multipotent mesenchymal stromal cells in vitro. Cytotechnology. 2016;68(4):565–77. Epub 2015/08/13. doi: 10.1007/s10616-015-9906-5 26266638.

23. Siegel G, Schafer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009;87(9 Suppl):S45–9. doi: 10.1097/TP.0b013e3181a285b0 19424005.

24. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of tissue engineering and regenerative medicine. 2019. doi: 10.1002/term.2914 31216380.

25. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications. Current stem cell research & therapy. 2013;8(2):144–55. doi: 10.2174/1574888x11308020005 23279098.

26. Zhang K, Na T, Wang L, Gao Q, Yin W, Wang J, et al. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells. Vaccine. 2014;32(50):6820–7. doi: 10.1016/j.vaccine.2014.07.071 25086263.

27. Na T, Liu J, Zhang K, Ding M, Yuan BZ. The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. PloS one. 2015;10(2):e0118168. doi: 10.1371/journal.pone.0118168 25692676.

28. Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, et al. TWEAK enhances TGF-beta-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respiratory research. 2015;16:48. doi: 10.1186/s12931-015-0207-5 25890309.

29. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular therapy: the journal of the American Society of Gene Therapy. 2012;20(1):187–95. doi: 10.1038/mt.2011.189 21934657.

30. Sato R, Semba T, Saya H, Arima Y. Concise Review: Stem Cells and Epithelial-Mesenchymal Transition in Cancer: Biological Implications and Therapeutic Targets. Stem Cells. 2016;34(8):1997–2007. Epub 2016/06/03. doi: 10.1002/stem.2406 27251010.

31. Liu X, Sun H, Qi J, Wang L, He S, Liu J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature cell biology. 2013;15(7):829–38. doi: 10.1038/ncb2765 23708003.

32. El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, et al. Mesenchymal Stem Cells in Fibrotic Disease. Cell stem cell. 2017;21(2):166–77. doi: 10.1016/j.stem.2017.07.011 28777943.

33. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009;119(6):1420–8. doi: 10.1172/JCI39104 19487818.

34. Papaccio F, Paino F, Regad T, Papaccio G, Desiderio V, Tirino V. Concise Review: Cancer Cells, Cancer Stem Cells, and Mesenchymal Stem Cells: Influence in Cancer Development. Stem Cells Transl Med. 2017;6(12):2115–25. doi: 10.1002/sctm.17-0138 29072369.

35. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med. 2017;6(12):2173–85. Epub 2017/10/28. doi: 10.1002/sctm.17-0129 29076267.

36. Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy. 2017;19(12):1351–82. Epub 2017/10/02. doi: 10.1016/j.jcyt.2017.08.004 28964742.

37. Yuan BZ, Wang J. The regulatory sciences for stem cell-based medicinal products. Front Med. 2014;8(2):190–200. Epub 2014/04/16. doi: 10.1007/s11684-014-0323-5 24733351.

Článek vyšel v časopise


2020 Číslo 1