Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome

Autoři: Alessandra De Cesare aff001;  Claudia Sala aff002;  Gastone Castellani aff002;  Annalisa Astolfi aff003;  Valentina Indio aff003;  Alberto Giardini aff004;  Gerardo Manfreda aff001
Působiště autorů: Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy aff001;  Department of Physics and Astronomy, University of Bologna, Bologna, Italy aff002;  Centro Interdipartimentale di Ricerche sul Cancro "Giorgio Prodi" (CIRC), Bologna, Italy aff003;  Centro Sperimentale del Latte, Zelo Buon Persico, Lodi, Italy aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228338


In this study we gained insights into the effects of the supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) in the chicken drinking water on crop and caeca microbiomes. The probiotic was supplemented at the concentrations of 0.2 g Lactobacillus acidophilus/day/bird and 0.02 g Lactobacillus acidophilus/day/bird and its effect on the crop and caeca microbiomes was assessed at 14 and 35 days of rearing. The results showed that mean relative abundance of Lactobacillus acidophilus in the caeca did not show significative differences in the treated and control birds, although Lactobacillus acidophilus as well as Faecalibacterium prausnitzii, Lactobacillus crispatus and Lactobacillus reuteri significantly increased over time. Moreover, the treatment with the high dose of probiotic significantly increased the abundance of Clostridium asparagiforme, Clostridium hathewayi and Clostridium saccharolyticum producing butyrate and other organic acids supporting the chicken health. Finally, at 35 days, the Cell division protein FtsH (EC 3.4.24.-) and the Site-specific recombinase genes were significantly increased in the caeca of birds treated with the high dose of probiotic in comparison to the control group. The results of this study showed that Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in the drinking water at the concentrations of 0.2 and 0.02 g Lactobacillus acidophilus/day/bird improved beneficial microbes and functional genes in broiler crops and caeca. Nevertheless, the main site of action of the probiotic is the crop, at least in the early stage of the chicken life. Indeed, at 14 days Lactobacillus acidophilus was significantly higher in the crops of chickens treated with the high dose of LA in comparison to the control (14.094 vs 1.741%, p = 0.036).

Klíčová slova:

Birds – Clostridium – Crops – Extremophiles – Chickens – Lactobacillus – Microbiome – Probiotics


1. Patterson J, Burkholder K. Application of prebiotics and probiotics in poultry production. Poultry Science. 2003; 82(4):627–31. doi: 10.1093/ps/82.4.627 12710484

2. Ohimain EI, Ofongo RTS. The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: A review. Journal of Animal and Veterinary Advances. 2012; 4:135–143.

3. Gaggia F, Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology. 2010; 141:S15–S28. doi: 10.1016/j.ijfoodmicro.2010.02.031 20382438

4. Ritzi MM, Abdelrahman W, Mohnl M, Dalloul RA. Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poultry Science. 2010; 93(11):2772–2778.

5. Tannock GW. A Special Fondness for Lactobacilli. Applied and Environmental Microbiology. 2004; 70(6):3189–94. doi: 10.1128/AEM.70.6.3189-3194.2004 15184111

6. Zhao R, Sun J, Mo H, Zhu Y. Analysis of functional properties of Lactobacillus acidophilus. World Journal of Microbiology and Biotechnology. 2007; 23(2):195–200.

7. Huyghebaert G, Ducatelle R, Van Immerseel F. An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal. 2011;187(2):182–8. doi: 10.1016/j.tvjl.2010.03.003 20382054

8. Haghighi HR, Gong J, Gyles CL, Hayes MA, Sanei B, Parvizi P, et al. Modulation of antibody-mediated immune response by probiotics in chickens. Clinical and Diagnostic Laboratory Immunology. 2005;12(12):1387–92. doi: 10.1128/CDLI.12.12.1387-1392.2005 16339061

9. Nousiainen J, Javanainen P, Setälä J, Wright Av, Salminen S, von Wright A, et al. Lactic acid bacteria as animal probiotics. In: Lactic acid bacteria: microbiology and functional aspects. 2004. Ed. 3; pp. 547–80.

10. Fuller R. Probiotics in man and animals. Journal of Applied Bacteriology. 1989; 66(5):365–78. 2666378

11. Willis WL, Reid L. Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poultry Science. 2008;87(4):606–11. doi: 10.3382/ps.2006-00458 18339979

12. Olnood CG, Beski SS, Iji PA, Choct M. Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora. Animal Nutrition. 2015; 1(3): 192–202. doi: 10.1016/j.aninu.2015.07.002 29767168

13. Gardiner GE, O'Sullivan E, Kelly J, Auty MA, Fitzgerald GF, Collins JK, et al. Comparative survival rates of human-derived probiotic Lactobacillus paracesei and L. salivarius strains during heat treatment and spray drying. Journal of Applied and Environmental Microbiology. 2000; 66: 2605–12. doi: 10.1128/aem.66.6.2605-2612.2000 10831444

14. Morelli L. In vitro selection of probiotic Lactobacilli: a critical appraisal. Current Issues Intestinal Microbiology. 2000; 1: 59–67.

15. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology. 2004; 96:1024–39. 15078519

16. De Cesare A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, et al. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbiome and productive performance in broiler chickens. PloSOne. 2017; 12(5):e0176309.

17. Commission European. Council Directive 43/EC of 28 June 2007, laying down minimum rules for the protection of chickens kept for meat production. Official Journal of the European Union L. 2007; 182:19–28.

18. Bianchi Salvadori B, Camaschella P, Lavezzari D. Les lactobacilles specifiques du poulet. Leur influence sur la microflore du tube digestif Microbiologie Aliment Nutrition. 1985; 3:73–82.

19. Meyer F, Paarmann D, D'Souza M, Olson R, Glass E, Kubal M, et al. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008; 9(1):386.

20. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research. 2007; 35(21):7188–96. doi: 10.1093/nar/gkm864 17947321

21. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology. 2006; 72(7):5069–72. doi: 10.1128/AEM.03006-05 16820507

22. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research. 2003; 31(1):442–3. doi: 10.1093/nar/gkg039 12520046

23. Kanehisa M. The KEGG database. silico simulation of biological processes. 2002; 247:91–103.

24. Fernández-Rubio C, Ordóñez C, Abad-González J, Garcia-Gallego A, Honrubia MP, Mallo JJ, et al. Butyric acid-based feed additives help protect broiler chickens from Salmonella Enteritidis infection. Poultry Science. 2009; 88(5):943–8. doi: 10.3382/ps.2008-00484 19359681

25. Calabrese EJ, Blain RB. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regulatory Toxicology and Pharmacology. 2011; 61(1): 73–81. doi: 10.1016/j.yrtph.2011.06.003 21699952

26. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013; 341(6143), 295–298. doi: 10.1126/science.1235872 23869020

27. Trinchieri V, Di Carlo S, Bossu M, Polimeni A. Use of lozenges containing Lactobacillus brevis CD2 in recurrent aphthous stomatitis: a double-blind placebo-controlled trial. Ulcers. 2011; Vol. 2011: 1–6.

28. Yokoyama SI, Oshima K, Nomura I, Hattori M, Suzuki T. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine. Journal of Bacteriology. 2011; 193(19): 5570–5571. doi: 10.1128/JB.05626-11 21914883

29. Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food and Chemical Toxicology. 2018; 112:310–319. doi: 10.1016/j.fct.2017.12.066 29294345

30. Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L. Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Applied and Environmental Microbiology. 2014; 80(2): 478–485. doi: 10.1128/AEM.02472-13 24212578

31. Asther M, Khan AW. Influence of the presence of Zymomonas anaerobia on the conversion of cellobiose, glucose, and xylose to ethanol by Clostridium saccharolyticum. Biotechnology and Bioengineering. 1984; 26: 970–972. 18553484

32. Yokoyama SI, Oshima K, Nomura I, Hattori M, Suzuki T. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine. Journal of Bacteriology. 2011; Oct: 5570–5571. doi: 10.1128/JB.05626-11 21914883

33. Gerard P, Brezillon C, Quere F, Salmon A, Rabot S. Characterization of cecal microbiota and response to an orally administered Lactobacillus probiotic strain in the broiler chicken. Journal Molecular Microbiology and Biotechnology. 2008; 14:115–122.

34. Danzeisen JL, Kim HB, Isaacson RE, Tu ZJ, Johnson TJ. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One. 2011; 6:e27949. doi: 10.1371/journal.pone.0027949 22114729

35. Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Frontiers in Veterinary Science. 2016; 3:2. doi: 10.3389/fvets.2016.00002 26835461

36. Fischer B, Rummel G, Aldridge P, Jenal U. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Molecular microbiology. 2012; 44(2): 461–478.

37. Tominaga A, Ikemizu S, Enomoto M. Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii. Journal of Bacteriology. 1991; 173(13): 4079–4087. doi: 10.1128/jb.173.13.4079-4087.1991 2061288

38. Migocka M. Copper‐transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB life. 2015; 67(10): 737–745. 26422816

Článek vyšel v časopise


2020 Číslo 1