Numerical simulation of atmospheric CO2 concentration and flux over the Korean Peninsula using WRF-VPRM model during Korus-AQ 2016 campaign


Autoři: Changhyoun Park aff001;  Soon-Young Park aff002;  Kevin R. Gurney aff003;  Christoph Gerbig aff004;  Joshua P. DiGangi aff005;  Yonghoon Choi aff005;  Hwa Woon Lee aff002
Působiště autorů: Institute of Environmental Studies, Pusan National University, Busan, South Korea aff001;  Department of Atmospheric Environmental Sciences, Pusan National University, Busan, South Korea aff002;  School of Life Sciences, Arizona State University, Arizona, United States of America aff003;  Department Biogeochemical Systems, Max Plank Institute for Biogeochemistry, Jena, Germany aff004;  National Aeronautics and Space Langley Research Center, Hampton, Virginia, United States of America aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228106

Souhrn

We conducted regional scale CO2 simulations using the Weather Research and Forecasting model (WRF) coupled with the Vegetation Photosynthesis and Respiration Model (VPRM). We contrasted simulated concentrations with column, ground and aircraft observations during the Korea-United States Air Quality (KORUS-AQ) 2016 field campaign. Overall, WRF-VPRM slightly underestimates CO2 concentrations at ground and column monitoring sites, but it significantly underestimates at an inland tower measurement site, especially within the stable (nocturnal) boundary layer in nighttime. The model successfully captures the airborne vertical profiles but showed a large offset within the planetary boundary layer (PBL) in the areas surrounding Seoul and around the Taeahn point source emissions in the west coastal area of the Korean Peninsula. A case study flight intended to capture Chinese influence observed no clear signals of long-range transport of CO2, due mainly to the much larger magnitude of background CO2 concentrations. The calculated Net Ecosystem Exchange (NEE) with flux measurements at a tower site in the South Korean Peninsula has also been evaluated comparing with CO2 flux measurements at a flux tower site, resulting in the underestimation by less than a factor of 1.

Klíčová slova:

Air quality – Aircraft – Carbon dioxide – Diurnal variations – Fossil fuels – Photosynthesis – Simulation and modeling – Urban areas


Zdroje

1. United Nations Statistics Division. Population Density and Urbanization [cited 2018 June 5]. Available from http://unstats.un.org/unsd/demographic/sconcerns/densurb/densurbmethods.htm (accessed August 2019)

2. Seto KC, Dhakal S, Bigio A, Blanco H, Delgado GC, Dewar D, et al. Human Settlements, Infrastructure and Spatial Planning. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA [cited 2018 Dec 1]. Available from https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_chapter12.pdf.

3. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, et al. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA [cited 2018 Dec 1]. Available from http://www.cgd.ucar.edu/events/20130729/files/Forster-Ramaswamy-etal-2007.pdf.

4. Le Quere C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, et al. Global carbon budget 2013. Earth System Science Data. 2014;6(1):235–63.

5. Turnbull JC, Karion A, Fischer ML, Faloona I, Guilderson T, Lehman SJ, et al. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics. 2011;11(2):705–21.

6. Asefi-Najafabady S, Rayner PJ, Gurney KR, McRobert A, Song Y, Coltin K, et al. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results. J Geophys Res-Atmos. 2014;119(17).

7. Saito M, Maksyutov S, Hirata R, Richardson AD. An empirical model simulating diurnal and seasonal CO2 flux for diverse vegetation types and climate conditions. Biogeosciences. 2009;6(4):585–99.

8. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science. 2010;329(5993):834–8. doi: 10.1126/science.1184984 20603496

9. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P Natl Acad Sci USA. 2007;104(48):18925–30.

10. Chevallier F, Viovy N, Reichstein M, Ciais P. On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes. Geophys Res Lett. 2006;33(13).

11. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc. 2001;82(11):2415–34.

12. Park C, Schade GW. Anthropogenic and Biogenic Features of Long-Term Measured CO2 Flux in North Downtown Houston, Texas. Journal of Environmental Quality. 2016;45(1):253–65. doi: 10.2134/jeq2015.02.0115 26828181

13. Velasco E, Roth M, Tan SH, Quak M, Nabarro SDA, Norford L. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmospheric Chemistry and Physics. 2013;13(20):10185–202.

14. Kotthaus S, Grimmond CSB. Identification of Micro-scale Anthropogenic CO2, heat and moisture sources—Processing eddy covariance fluxes for a dense urban environment. Atmos Environ. 2012;57:301–16.

15. Gurney KR, Mendoza DL, Zhou YY, Fischer ML, Miller CC, Geethakumar S, et al. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States. Environmental Science & Technology. 2009;43(14):5535–41.

16. Peylin P, Rayner PJ, Bousquet P, Carouge C, Hourdin F, Heinrich P, et al. Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmospheric Chemistry and Physics. 2005;5:3173–86.

17. Tans PP, Fung IY, Takahashi T. Observational Constraints on the Global Atmospheric Co2 Budget. Science. 1990;247(4949):1431–8. doi: 10.1126/science.247.4949.1431 17791210

18. Mahadevan P, Wofsy SC, Matross DM, Xiao XM, Dunn AL, Lin JC, et al. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochem Cy. 2008;22(2).

19. Ahmadov R, Gerbig C, Kretschmer R, Koerner S, Neininger B, Dolman AJ, et al. Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model. J Geophys Res-Atmos. 2007;112(D22).

20. Jamroensan A. Improving bottom-up and top-down estimates of carbon fluxes in the Midwestern USA. Ph.D Dissertation. University of Iowa; 2013.

21. Pillai D, Gerbig C, Ahmadov R, Rodenbeck C, Kretschmer R, Koch T, et al. High-resolution simulations of atmospheric CO2 over complex terrain—representing the Ochsenkopf mountain tall tower. Atmospheric Chemistry and Physics. 2011;11(15):7445–64.

22. Feng S, Lauvaux T, Newman S, Rao P, Ahmadov R, Deng AJ, et al. Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions. Atmospheric Chemistry and Physics. 2016;16(14):9019–45.

23. Park C, Gerbig C, Newman S, Ahmadov R, Feng S, Gurney KR, et al. CO2 Transport, Variability, and Budget over the Southern California Air Basin Using the High-Resolution WRF-VPRM Model during the CalNex 2010 Campaign. J Appl Meteorol Clim. 2018;57(6):1337–52.

24. Global Carbon Atlas. [cited 2019 Jan 10]. Database [Internet]. Available from http://globalcarbonatlas.org/en/CO2-emissions/

25. Peters GP, Minx JC, Weber CL, Edenhofer O. Growth in emission transfers via international trade from 1990 to 2008. P Natl Acad Sci USA. 2011;108(21):8903–8.

26. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P Natl Acad Sci USA. 2007;104(48):18925–30.

27. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, et al. Chapter G2 Carbon emissions from land use and land-cover change. Biogeosciences. 2012;9(1):5125–5142.

28. Hansis E, Davis SJ, Pongratz J. Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochem Cy. 2015;29(8):1230–46.

29. Liang Q, Jaegle L, Jaffe DA, Weiss-Penzias P, Heckman A, Snow JA. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide. J Geophys Res-Atmos. 2004;109(D23).

30. Wang LT, Wei Z, Yang J, Zhang Y, Zhang FF, Su J, et al. The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications. Atmos Chem Phys. 2014;14(6):3151–73.

31. Oh HR, Ho CH, Kim J, Chen DL, Lee S, Choi YS, et al. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmos Environ. 2015;109:23–30.

32. National Aeronautics and Space Administration. KORUS-AQ White Paper [cited 2019 Aug 10]. Available from https://espo.nasa.gov/korus-aq/content/KORUS-AQ_White_Paper.

33. University Corporation for Atmospheric Research. NCAR/UCAR Research Data Archive [cited 2018 Nov 11]. Database [Internet]. Available from https://rda.ucar.edu/datasets/ds083.3/.

34. National Weather Service Environmental Modeling Center. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive [cited 2018 Dec 10]. Database. Available from ftp://polar.ncep.noaa.gov/pub/history/sst/ophi

35. Hong SY, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review. 2006;134(9):2318–41.

36. Jung M, Henkel K, Herold M, Churkina G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment. 2006;101(4):534–53.

37. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. P Natl Acad Sci USA. 2007;104(48):18925–30.

38. Gurney, R. Fossil-Fuel Data Assimilation System (FFDAS) [cited 2019 Aug 13]. Database [Internet]. Available http://ffdas.rc.nau.edu/Data.html.

39. Rayner PJ, Raupach MR, Paget M, Peylin P, Koffi E. A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation. J Geophys Res-Atmos. 2010;115.

40. Nassar R, Napier-Linton L, Gurney KR, Andres RJ, Oda T, Vogel FR, et al. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. J Geophys Res-Atmos. 2013;118(2):917–33.

41. NASA. Introduction to the KORUS-AQ Rapid Science Synthesis Report [cited 2018 Feb 8]. Available from https://espo.nasa.gov/sites/default/files/documents/KORUS-AQ-ENG.pdf

42. California Institute of Technology. TCCON data from Anmeyondo (KR), Release GGG2014.R0 [cited 2018 Dec 11]. Database. Available from https://data.caltech.edu/records/266.

43. World Meteorological Organization. Global Atmosphere Watch. [cited 2019 Jan 12]. Available from http://www.climate.go.kr/

44. Willmott CJ. Some Comments on the Evaluation of Model Performance. B Am Meteorol Soc. 1982;63(11):1309–13.

45. Korea Meteorological Administraton. Meteorological Data Open Portal [cited 2018 Nov 11]. Database. Available from https://data.kma.go.kr/data/hr/selectRdsdRltmList.do?pgmNo=49.

46. Mahrt L. Modeling the Depth of the Stable Boundary-Layer. Bound-Lay Meteorol. 1981;21(1):3–19.

47. NOAA. Trends in Atmospheric Carbon Dioxide [cited 2018 Nov 11]. Available from https://www.esrl.noaa.gov/gmd/ccgg/trends/.

48. Tang WF, Arellano AF, DiGangi JP, Choi Y, Diskin GS, Agusti-Panareda A, et al. Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign. Atmos Chem Phys. 2018;18(15):11007–30.

49. Korea Airports Corporation domestic statistics by airways [cited 2019 Feb 20]. Database. Available from https://www.airport.co.kr/www/extra/stats/domesticLineStats/layOut.do?menuId=403

50. Korea Power Exchange. Power Statistics Information System [cited 2019 Jan 5]. Database. Available from http://epsis.kpx.or.kr/epsisnew/

51. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society. 2001;82(11):2415–34.

52. Aubinet M, Feigenwinter C, Heinesch B, Laffineur Q, Papale D, Reichstein M, Rinne J. Gorsel EV. Nighttime Flux Correlation. In: Aubinet M, Vesala T, Papale D, editors. Eddy covariance. Springer; 2012. pp.133–157.


Článek vyšel v časopise

PLOS One


2020 Číslo 1