Effects of Allium hookeri on gut microbiome related to growth performance in young broiler chickens


Autoři: Sung-Hyen Lee aff001;  Sohyun Bang aff002;  Hwan-Hee Jang aff001;  Eun-Byeol Lee aff001;  Bong-Sang Kim aff003;  Seung-Hwan Kim aff004;  Sang-Hyun Kang aff004;  Kyung-Woo Lee aff005;  Dong-Wook Kim aff006;  Jung-Bong Kim aff001;  Jeong-Sook Choe aff001;  Shin-Young Park aff001;  Hyun S. Lillehoj aff007
Působiště autorů: National Institute of Agricultural Sciences, Rural Development Administration, Isoe-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea aff001;  Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea aff002;  Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea aff003;  KYOCHON F&B CO, Osan city, Kyounggido, Republic of Korea aff004;  Department of Animal Science and Technology, Konkuk University, Gawngjin-gu, Seoul, Republic of Korea aff005;  Department of Poultry Science, Korean National College of Agriculture and Fisheries, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea aff006;  Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Department of Agriculture, Beltsville, MD, United States of America aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226833

Souhrn

Healthy food promotes beneficial bacteria in the gut microbiome. A few prebiotics act as food supplements to increase fermentation by beneficial bacteria, which enhance the host immune system and health. Allium hookeri is a healthy food with antioxidant and anti-inflammatory activities. A. hookeri is used as a feed supplement for broiler chickens to improve growth performance. Although the underlying mechanism is unknown, A. hookeri may alter the gut microbiome. In the current study, 16S rRNA sequencing has been carried out using samples obtained from the cecum of broiler chickens exposed to diets comprising different tissue types (leaf and root) and varying amounts (0.3% and 0.5%) of A. hookeri to investigate their impact on gut microbiome. The microbiome composition in the groups supplemented with A. hookeri leaf varied from that of the control group. Especially, exposure to 0.5% amounts of leaf resulted in differences in the abundance of genera compared with diets comprising 0.3% leaf. Exposure to a diet containing 0.5% A. hookeri leaf decreased the abundance of the following bacteria: Eubacterium nodatum, Marvinbryantia, Oscillospira, and Gelria. The modulation of gut microbiome by leaf supplement correlated with growth traits including body weight, bone strength, and infectious bursal disease antibody. The results demonstrate that A. hookeri may improve the health benefits of broiler chickens by altering the gut microbiome.

Klíčová slova:

Animal performance – Bacteria – Body weight – Diet – Chickens – Leaves – Microbiome – Poultry


Zdroje

1. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014;7:17–44. doi: 10.3390/nu7010017 25545101

2. Kim JE, Lillehoj HS, Hong YH, Kim GB, Lee SH, Lillehoj EP, et al. Dietary Capsicum and Curcuma longa oleoresins increase intestinal microbiome and necrotic enteritis in three commercial broiler breeds. Res Vet Sci. 2015;102:150–1508. doi: 10.1016/j.rvsc.2015.07.022 26412535

3. Gerritsen J, Smidt H, Rijkers GT, Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr. 2011;6: 209–240. doi: 10.1007/s12263-011-0229-7 21617937

4. Ferrario C, Statello R, Carnevali L, Mancabelli L, Milani C, Mangifesta M, et al. How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers. Front Microbiol. 2017;8: 1749. doi: 10.3389/fmicb.2017.01749 28955319

5. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104:S1–S63. doi: 10.1017/S0007114510003363 20920376

6. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–352, doi: 10.1038/nri.2016.42 27231050

7. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K,et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73, doi: 10.1186/s12967-017-1175-y 28388917

8. Kim NS, Choi BK, Lee SH, Jang HH, Kim JB, Kim HR, et al. Effects of Allium hookeri on glucose metabolism in type II diabetic mice.Kor JPharmacogn. 2015;46:78–83.

9. Lee SH, Kim NS, Choi BK, Jang HH, Kim JB, Lee YM, et al. Effects of Allium hookeri on lipid metabolism in type II diabetic mice. Kor J Pharmacogn. 2015;46:148–153.

10. Sengupta A, Ghosh S, Bhattacharjee S. Allium vegetables in cancer prevention: an overview. Asian Pac J Cancer P. 2004;5: 237–245.

11. Bianchini F, Vainio H. Allium vegetables and organosulfur compounds: do they help prevent cancer? Environ Health Perspect. 2001;109: 893–902. doi: 10.1289/ehp.01109893 11673117

12. Nencini C, Cavallo F, Capasso A, Franchi GG, Giorgio G, Micheli L. Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytother Res. 2007;21:874–878. doi: 10.1002/ptr.2168 17514631

13. Kim CH, Lee MA, Kim TW, Jang JY, Kim HJ. Anti-inflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264. 7 cells.J Korean Soc Food Sci Nutr. 2012;41: 1645–1648. doi: 10.3746/jkfn.2012.41.11.1645

14. Lee KW, Kim YS, Park PJ, Jeong JH. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri. J Korean Soc Food Sci Nutr. 2014;43:1808–1816. doi: 10.3746/jkfn.2014.43.12.1808

15. Hwang JS, Lee BH, An X, Jeong HR, Kim YE, Lee Ii, et al. Total Phenolics, Total Flavonoids, and Antioxidant Capacity in the Leaves, Bulbs, and Roots of Allium hookeri. Korean J Food Sci Technol. 2015;47:261–266. doi: 10.9721/kjfst.2015.47.2.261

16. Lee YS, Lee SH, Jeong MS, Kim JB, Jang HH, Choe JS, et al. In vitro analysis of the immunomodulating effects of Allium hookeri on lymphocytes,macrophages, and tumour cells. J Poult Sci. 2017;54:142–148. doi: 10.2141/jpsa.0160108

17. Roh SS, Kwon OJ, Yang JH, Kim YS, Lee SH, Jin JS, et al. Allium hookeri root protects oxidative stress-induced inflammatory responses and beta-cell damage in pancreas of streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016;16: 63. doi: 10.1186/s12906-016-1032-1 26888412

18. Lee Y, Lee SH, Gadde UD, Oh ST, Lee SJ, Lillehoj HS. Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler chicken. Res Vet Sci. 2017;112:149–155. doi: 10.1016/j.rvsc.2017.03.019 28391057

19. Song EY, Pyun CW, Hong GE, Lim KW, Lee CH. Effect of addition of Allium hookeri on the quality of fermented sausage with meat from sulfur fed pigs during ripening. Korean J Food Sci Anim Resour. 2014;34: 263–272. doi: 10.5851/kosfa.2014.34.3.263 26761166

20. Kim JH, Ju MG, Yeon SJ, Hong GE, Lee CH. Effect of Allium hookeri and whey powder in diet of pigs on physicochemical characteristics and oxidative stability of pork. Ital J AnimSci. 2017;1:9–17. doi: 10.1080/1828051X.2017.1326856

21. Viveros A. Chamorro S, Pizarro M, Arija I, Centeno C, Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gutmorphology in broiler chicks. Poult Sci. 2011;90:566–578. doi: 10.3382/ps.2010-00889 21325227

22. Lee EB, Lee SH, Kim SH, Kang SH, Lee KW, Kim DH, et al. Effects of Dietary Allium Hookeri on Growth and Blood Biochemical Parameters in Broiler Chickens. Kor J Pharmacogn. 2018;49:1–6.

23. Fujisawa H, Watanabe K, Suma K, Origuchi K, Matsufuji H, Seki T, et al. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem. 2009;73:1948–1955. doi: 10.1271/bbb.90096 19734685

24. Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways incolonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3: 448. doi: 10.3389/fphys.2012.00448 23226130

25. Lee YK. Effects of diet on gut microbiota profile and the implications for health and disease. Biosci Microbiota Food Health. 2013;32:1–12. doi: 10.12938/bmfh.32.1 24936357

26. Ur Rahman S, Khan S, Chand N, Sadique U, Khan RU. In vivo effects of Allium cepa L. on the selected gut microflora and intestinal histomorphology in broiler. Acta Histochem. 2017;119:446–450. doi: 10.1016/j.acthis.2017.04.004 28495367

27. Ravussin Y. Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, et al. Responses of gut microbiota to diet composition and weight loss in lean and obesemice. Obesity (Silver Spring). 2012;20:738–747. doi: 10.1038/oby.2011.111 21593810

28. D'Amelio P, Sassi F. Gut Microbiota, Immune System, and Bone. Calcif Tissue Int. 2018;102:415–425. doi: 10.1007/s00223-017-0331-y 28965190

29. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. The Am J Clin Nutr. 2004;79: 727–747. doi: 10.1093/ajcn/79.5.727 15113710

30. Edwards C, Havlik J, Cong W, Mullen W, Preston T, Morrison DJ, et al. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota.Nutr Bull. 2017;42:356–360. doi: 10.1111/nbu.12296 29200959

31. Scalbert A, Morand C, Manach C, Rémésy C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother. 2002; 56: 276–282. doi: 10.1016/s0753-3322(02)00205-6 12224598

32. Lee HC, Jenner AM, Low CS, Lee YK. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol. 2006;157:876–884. doi: 10.1016/j.resmic.2006.07.004 16962743

33. Sakamoto M, Benno Y. Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 2006;56:1599–1605. doi: 10.1099/ijs.0.64192-0 16825636

34. Cutler R, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci. 2004;61:71–74. doi: 10.1080/09674845.2004.11732646 15250668

35. Reiter J, Levina N, van der Linden M, Gruhlke M, Martin C, Slusarenko AJ. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor. Molecules. 2017; 22:E1711. doi: 10.3390/molecules22101711 29023413

36. Cervantes HM. Antibiotic-free poultry production: is it sustainable? J Appl PoultRes. 2015;24:91–97. doi: 10.3382/japr/pfv006

37. Kim DK, Lillehoj HS, Lee SH, Jang SI, Lillehoj EP, Bravo D. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult Sci. 2013;92:2635–2643. doi: 10.3382/ps.2013-03095 24046410

38. Lillehoj HS, Kim DK, Bravo DM, Lee SH. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc. 2011;Suppl 34. doi: 10.1186/1753-6561-5-S4-S34 21645315

39. Lee SH, Lillehoj HS, Jang SI, Lee KW, Bravo D, Lillehoj EP. Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella. Vet Parasitol. 2011;181:97–105. doi: 10.1016/j.vetpar.2011.05.003 21676547

40. Lee S, Lillehoj HS, Park DW, Jang SI, Morales A, García D, et al. Induction of passive immunity in broiler chickens against Eimeria acervulina by hyperimmune egg yolk immunoglobulin Y. Poult Sci. 2009;88:562–566. doi: 10.3382/ps.2008-00340 19211525

41. Kim DK, Lillehoj HS, Lee SH, Lillehoj EP, Bravo D. Improved resistance to Eimeriaacervulina infection in chickens due to dietary supplementation with garlic metabolites. Br J Nutr. 2013;109: 76–88. doi: 10.1017/S0007114512000530 22717023

42. Lee K, Lillehoj HS, Jang SI, Lee SH, Bautista DA, Siragusa GR. Effect of Bacillus subtilis-based direct-fed microbials on immune status in broiler chickens raised on fresh or used litter. Asian-Australas J Anim Sci. 2013;26:1592–1597. doi: 10.5713/ajas.2013.13178 25049746

43. Lee SH, Lillehoj HS, Jang SI, Lee KW, Park MS, Bravo D,et al. Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis. Br J Nutr. 2011;106:862–869. doi: 10.1017/S0007114511001073 21554819

44. Lee SH, Lillehoj HS, Jang SI, Lillehoj EP, Min W, Bravo DM. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br J Nutr. 2013;110:840–847. doi: 10.1017/S0007114512006083 23566550

45. Lee EB, Lee SH, Kim SH, Kang SH, Lee KW, et al. Effects of Dietary Allium hookeri on Growth and Blood Biochemical Parameters in Broiler Chickens. Pharmacogn. 2018; 49:1–6.

46. Santoso U, Tanaka K, Ohtani S. Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br J Nutr. 1995;74:523–529. doi: 10.1079/BJN19950155 7577890

47. Zeng B, Han S, Wang P, Wen B, Jian W, Guo W, et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci Rep. 2015;5: 9342. doi: 10.1038/srep09342 25791609

48. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26:69–74. doi: 10.1016/j.tem.2014.11.004 25497348

49. Li L, Kubasová T, Rychlik I, Hoerr FJ, Rautenschlein S. Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition. PloS One. 2018;13:e0192066. doi: 10.1371/journal.pone.0192066 29390031

50. Pacifici R. The immune system and bone. Arch Biochem Biophys. 2010;503: 41–53. doi: 10.1016/j.abb.2010.05.027 20599675

51. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–1367. doi: 10.1002/jbmr.1588 22407806

52. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593 24142950

53. Callahan B J, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869 27214047

54. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O 'hara RB. Package ‘vegan’. 2019 Available from: https://cran.r-project.org, https://github.com/vegandevs/vegan

55. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616 19910308

56. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological). 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

57. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676 23975157


Článek vyšel v časopise

PLOS One


2020 Číslo 1