Promising antifungal activity of new oxadiazole against Candida krusei

Autoři: Daniella Renata Faria aff001;  Karina Mayumi Sakita aff001;  Isis Regina Grenier Capoci aff001;  Glaucia Sayuri Arita aff001;  Franciele Abigail Vilugron Rodrigues-Vendramini aff001;  Admilton Gonçalves de Oliveira Junior aff002;  Maria Sueli Soares Felipe aff003;  Patrícia de Souza Bonfim de Mendonça aff001;  Terezinha Inez Estivalet Svidzinski aff001;  Erika Seki Kioshima aff001
Působiště autorů: Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil aff001;  Department of Microbiology, Laboratory of Microbial Biotechnology, State University of Londrina, Londrina, Paraná, Brazil aff002;  Department of Cell Biology, Laboratory of Molecular Biology, University of Brasília, Brasília, Distrito Federal, Brazil aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Candida krusei is one of the most common agents of invasive candidiasis and candidemia worldwide, leading to high morbidity and mortality rates. This species has become a problem due to its intrinsic resistance and reduced susceptibility to azoles and polyenes. Moreover, the number of antifungal drugs available for candidiasis treatment is limited, demonstrating the urgent need for the discovery of novel alternative therapies. In this work, the in vivo and in vitro activities of a new oxadiazole (LMM11) were evaluated against C. krusei. The minimum inhibitory concentration ranged from 32 to 64 μg/mL with a significant reduction in the colony forming unit (CFU) count (~3 log10). LMM11 showed fungicidal effect, similar to amphotericin, reducing the viable cell number (>99.9%) in the time-kill curve. Yeast cells presented morphological alterations and inactive metabolism when treated with LMM11. This compound was also effective in decreasing C. krusei replication inside and outside macrophages. A synergistic effect between fluconazole and LMM11 was observed. In vivo treatment with the new oxadiazole led to a significant reduction in CFU (0.85 log10). Furthermore, histopathological analysis of the treated group exhibited a reduction in the inflammatory area. Taken together, these results indicate that LMM11 is a promising candidate for the development of a new antifungal agent for the treatment of infections caused by resistant Candida species such as C. krusei.

Klíčová slova:

Antifungals – Antimicrobial resistance – Candida – Candida albicans – Candidiasis – Drug metabolism – Kidneys – Yeast


1. Arendrup MC, Fuursted K, Gahrn-Hansen B, Jensen IM, Knudsen JD, Lundgren B, et al. Seminational Surveillance of Fungemia in Denmark: Notably High Rates of Fungemia and Numbers of Isolates with Reduced Azole Susceptibility. J Clin Microbiol. 2005; 43(9): 4434–4440. doi: 10.1128/JCM.43.9.4434-4440.2005 16145088

2. Low C-Y, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 Med Rep. 2011; 3: 14. doi: 10.3410/M3-14 21876720

3. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. ECDC. 2019. Available from:

4. Motoa G1, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Rev Iberoam Micol. 2017; 34(1): 17–22. doi: 10.1016/j.riam.2016.02.006 27810262

5. Enoch DA, Yang H, Aliyu SH, Micallef C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol Biol. 2017; 1508: 17–65. doi: 10.1007/978-1-4939-6515-1_2 27837497

6. Colombo AL, Guimarães T, Sukienik T, Pasqualotto AC, Andreotti R, Queiroz-Telles F, et al. Prognostic factors and historical trends in the epidemiology of candidemia in critically ill patients: an analysis of five multicenter studies sequentially conducted over a 9-year period. Intensive Care Med. 2014; 40(10): 1489–98. doi: 10.1007/s00134-014-3400-y 25082359

7. Leroy O, Bailly S, Gangneux J-P, Mira P-J, Devos P, Dupont H, et al. Systemic antifungal therapy for proven or suspected invasive candidiasis: the AmarCAND 2 study. Ann Intensive Care. 2016; 6: 2. doi: 10.1186/s13613-015-0103-7 26743881

8. Doi AM, Pignatari ACC, Edmond MB, Marra AR, Camargo LF, Siqueira RA, et al. Epidemiology and Microbiologic Characterization of Nosocomial Candidemia from a Brazilian National Surveillance Program. PLoS One. 2016; 11(1): e0146909. doi: 10.1371/journal.pone.0146909 26808778

9. Strollo S, Lionakis MS, Adjemian J, Steiner CA, Prevots DR. Epidemiology of Hospitalizations Associated with Invasive Candidiasis, United States, 2002–2012. Emerg Infect Dis. 2016; 23(1): 7–13. doi: 10.3201/eid2301.161198 27983497

10. Guinea J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect. 2014; 6: 5–10.

11. Magalhães YC, Bomfim MR, Melônio LC, Ribeiro PC, Cosme LM, Rhoden CR, et al. Clinical significance of the isolation of Candida species from hospitalized patients. Braz J Microbiol. 2015; 46(1): 117–23. doi: 10.1590/S1517-838246120120296 26221096

12. Sharma Y, Chumber SK, Kaur M. Studying the Prevalence, Species Distribution, and Detection of In vitro Production of Phospholipase from Candida Isolated from Cases of Invasive Candidiasis. J Glob Infect Dis. 2017; 9(1): 8–11. doi: 10.4103/0974-777X.199995 28250619

13. Wille MP, Guimarães T, Furtado GHC, Colombo AL. Historical trends in the epidemiology of candidemia: analysis of an 11-year period in a tertiary care hospital in Brazil. Mem Inst Oswaldo Cruz. 2013; 108(3): 288–292.

14. Ishikane M, Hayakawa K, Kutsuna S, Takeshita N, Ohmagari N. Epidemiology of Blood Stream Infection due to Candida Species in a Tertiary Care Hospital in Japan over 12 Years: Importance of Peripheral Line-Associated Candidemia. PLoS ONE. 2016; 11(10): e0165346. doi: 10.1371/journal.pone.0165346 27798663

15. Muñoz P, Sánchez-Somolinos M, Alcalá L, Rodríguez-Créixems M, Peláez T, Bouza E. Candida krusei fungaemia: antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J Antimicrob Chemother. 2005; 55(2): 188–93. doi: 10.1093/jac/dkh532 15650001

16. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, et al. Candida krusei, a Multidrug-Resistant Opportunistic Fungal Pathogen: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol. 2008; 46(2): 515–521. doi: 10.1128/JCM.01915-07 18077633

17. Hrabovský V, Takáčová V, Schréterová E, Pastvová L, Hrabovská Z, Čurová K, et al. Distribution and antifungal susceptibility of yeasts isolates from intensive care unit patients. Folia Microbiol (Praha). 2017; 62(6): 525–530.

18. Wingard JR, Merz WG, Rinaldi MG, Johnson TR, Karp JE, Saral R. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N Engl J Med. 1991; 325(18): 1274–7. doi: 10.1056/NEJM199110313251803 1669837

19. Forastiero A, Garcia-Gil V, Rivero-Menendez O, Garcia-Rubio R, Monteiro MC, Alastruey-Izquierdo A, et al. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy. Antimicrob Agents Chemother. 2015; 59(11): 6975–82. doi: 10.1128/AAC.01005-15 26324281

20. Tavernier E, Desnos-Ollivier M, Honeyman F, Srour M, Fayard A, Cornillon J, et al. Development of echinocandin resistance in Candida krusei isolates following exposure to micafungin and caspofungin in a BM transplant unit. Bone Marrow Transplant. 2015; 50(1): 158–60. doi: 10.1038/bmt.2014.230 25402414

21. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 62(4): e1–50. doi: 10.1093/cid/civ933 26679628

22. Pappas PG, Rex JH, Sobel JD, Filler Scott G., Dismukes William E., Walsh Thomas J., et al. Guidelines for Treatment of Candidiasis. Clin Infect Dis. 2004; 38(2): 161–189. doi: 10.1086/380796 14699449

23. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009; 26(4): 223–7. doi: 10.1016/j.riam.2009.06.003 19836985

24. Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014; 4(5): pii: a019703. doi: 10.1101/cshperspect.a019703 24789878

25. Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000; 267(20):6102–9. doi: 10.1046/j.1432-1327.2000.01701.x 11012661

26. Abadio AKR, Kioshima ES, Leroux V, Martins NF, Maigret B, Felipe MSS. Identification of New Antifungal Compounds Targeting Thioredoxin Reductase of Paracoccidioides Genus. PLoS One. 2015; 10(11): e0142926. doi: 10.1371/journal.pone.0142926 26569405

27. Kioshima ES, Svidzinski TIE, Bonfin-Mendonça PS, Capoci IRG, Faria DR, Sakita KM, et al. Composição farmacêutica baseada em compostos 1,3,4-oxadiazólicos e seu uso na preparação de medicamentos para tratamento de infecções sistêmicas. BR 10 2018 009020 8. 03 May 2018.

28. Rodrigues-Vendramini FAV, Faria DR, Arita GS, Capoci IRG, Sakita KM, Caparroz-Assef SM, et al. Antifungal activity of two oxadiazole compounds for the paracoccidioidomycosis treatment. PLoS Negl Trop Dis. 2019; 13(6): e0007441. doi: 10.1371/journal.pntd.0007441 31163021

29. Capoci IRG, Sakita KM, Faria DR, Rodrigues-Vendramini FAV, Arita GS, de Oliveira AG, et al. Two New 1,3,4-Oxadiazoles With Effective Antifungal Activity Against Candida albicans. Front Microbiol. 2019; 10:2130. doi: 10.3389/fmicb.2019.02130 31572335

30. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. CLSI document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.

31. CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement. CLSI document M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

32. Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 1997; 41(6): 1392–1395. 9174207

33. Kwolek-Mirek M, Zadrag-Tecza R. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 2014; 14(7): 1068–1079. doi: 10.1111/1567-1364.12202 25154541.

34. De Oliveira AG, Spago FR, Simionato AS, Navarro MOP, da Silva CS, Barazetti AR, et al. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri. Front Microbiol. 2016; 7: 113. doi: 10.3389/fmicb.2016.00113 26903992

35. Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, et al.Anti-helminthic Compound Mebendazole Has Multiple Antifungal Effects against Cryptococcus neoformans. Front Microbiol. 2017; 8:535. doi: 10.3389/fmicb.2017.00535 28400768

36. Khan MS, Malik A, Ahmad I. Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol. 2011; 50(1): 33–42. doi: 10.3109/13693786.2011.582890 21756200

37. Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio. 2015; 6(3): e00647. doi: 10.1128/mBio.00647-15 26106079

38. Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F, Sekawi Z, et al. Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Microbiol Lett. 2011; 315(2):87–93. doi: 10.1111/j.1574-6968.2010.02170.x 21204918

39. Wong SS, Kao RY, Yuen KY, Wang Y, Yang D, Samaranayake LP, et al. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One. 2014; 9(1):e85836. doi: 10.1371/journal.pone.0085836 24465737

40. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ. 2016; 47: 20–33. doi: 10.1016/j.jhealeco.2016.01.012 26928437

41. Danishuddin M, Khan AU. Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. Methods. 2015; 71: 135–45. 30 doi: 10.1016/j.ymeth.2014.10.019 25448480

42. Kitamura A. Discovery and characterization of ß-1,6-glucan inhibitors. Expert Opin Drug Discov. 2010; 5(8): 739–49. 31 doi: 10.1517/17460441.2010.498472 22827797

43. Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, et al. A Novel Small Molecule Inhibitor of Candida albicans Biofilm Formation, Filamentation and Virulence with Low Potential for the Development of Resistance. NPJ Biofilms Microbiomes. 2015; 1. pii: 15012. doi: 10.1038/npjbiofilms.2015.12 26691764

44. Watamoto T, Egusa H, Sawase T, Yatani H. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms. Front Microbiol. 2015; 6: 1453. doi: 10.3389/fmicb.2015.01453 26733987

45. Ravinarayanan H, Paul BK, Chakraborty A, Sundar K. Homology modeling of target proteins and identification novel antifungal compounds against Candida tropicalis through structure based virtual screening. Conf Proc IEEE Eng Med Biol Soc. 2015; 4419–22. doi: 10.1109/EMBC.2015.7319375 26737275

46. Salci TP, Negri M, Abadio AKR, Bonfim-Mendonça P, Capoci I, Caparroz-Assef SM, et al. A new small-molecule KRE2 inhibitor against invasive Candida parapsilosis infection. Future Microbiol. 2017; 12: 1283–1295. doi: 10.2217/fmb-2017-0065 28975802

47. Bagatin MC, Pimentel AL, Biavatti DC, Basso EA, Kioshima ES, Seixas FAV, et al. Targeting the Homoserine Dehydrogenase of Paracoccidioides Species for Treatment of Systemic Fungal Infections. Antimicrob Agents Chemother. 2017; 61(9). pii: e00165–17. doi: 10.1128/AAC.00165-17 28652239

48. Das B, Khan MI, Jayabalan R, Behera KS, Yun S-I, Tripathy SK, et al. Understanding the Antifungal Mechanism of Ag@ZnO Core-shell Nanocomposites against Candida krusei. Sci Rep. 2016; 6: 36403. doi: 10.1038/srep36403 27812015

49. Gill K, Kumar S, Xess I, Dey S. Novel synthetic anti-fungal tripeptide effective against Candida krusei. Indian J Med Microbiol. 2015; 33(1): 110–6. doi: 10.4103/0255-0857.148404 25560012

50. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010; 48(4): 1366–77. doi: 10.1128/JCM.02117-09 20164282

51. Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses. 2015; 58 Suppl 2: 2–13.

52. Kang K, Wong KS, Seneviratne CJ, Samaranayake LP, Fong WP, Tsang PW. In vitro synergistic effects of metergoline and antifungal agents against Candida krusei. Mycoses. 2010; 53(6): 495–9. doi: 10.1111/j.1439-0507.2009.01747.x 19538518

53. Li LP, Liu W, Liu H, Zhu F, Zhang DZ, Shen H, et al. Synergistic antifungal activity of berberine derivative B-7b and fluconazole. PLoS One. 2015; 10(5): e0126393. doi: 10.1371/journal.pone.0126393 25992630

54. Moraes RC, Carvalho AR, Lana AJ, Kaiser S, Pippi B, Fuentefria AM, et al. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates. Pharm Biol. 2016; 55(1): 406–415.

55. Katragkou A, McCarthy M, Meletiadis J, Hussain K, Moradi PW, Strauss GE, et al. In vitro combination therapy with isavuconazole against Candida spp. Med Mycol. 2017; 55(8): 859–868. doi: 10.1093/mmy/myx006 28204571

56. Sharifzadeh A, Khosravi AR, Shokri H, Tari PS. Synergistic anticandidal activity of menthol in combination with itraconazole and nystatin against clinical Candida glabrata and Candida krusei isolates. Microb Pathog. 2017; 107: 390–396. doi: 10.1016/j.micpath.2017.04.021 28431915

57. Essid R, Hammami M, Gharbi D, Karkouch I, Hamouda TB, Elkahoui S, et al. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl Microbiol Biotechnol. 2017; 101(18): 6993–7006. doi: 10.1007/s00253-017-8442-y 28766033

58. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995; 47(2): 331–85. 7568331

59. White RL, Burgess DS, Manduru M, Bosso JA. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996; 40(8): 1914–8. 8843303

60. Lewis RE, Diekema DJ, Messer SA, Pfaller MA, Klepser ME. Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother. 2002; 49: 345–351. doi: 10.1093/jac/49.2.345 11815578

61. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 2003; 52(1): 1. doi: 10.1093/jac/dkg301 12805255

62. Meletiadis J, Verweij PE, TeDorsthorst DT, Meis JF, Mouton JW. Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: comparison of different drug interaction models. Med Mycol. 2005; 43(2): 133–52. doi: 10.1080/13693780410001731547 15832557

63. García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O. The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing. Infect Immun. 2011; 79(6): 2136–2144. doi: 10.1128/IAI.00044-11 21422181

64. Lionakis MS, Lim JK, Lee CC, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011; 3(2): 180–99. doi: 10.1159/000321157 21063074

65. Graybill JR, Bocanegra R, Luther M, Fothergill A, Rinaldi MJ. Treatment of murine Candida krusei or Candida glabrata infection with L-743,872. Antimicrob Agents Chemother. 1997; 41(9): 1937–1939. 9303388

66. Majithiya J, Sharp A, Parmar A, Denning DW, Warn PA. Efficacy of isavuconazole, voriconazole and fluconazole in temporarily neutropenic murine models of disseminated Candida tropicalis and Candida krusei. J Antimicrob Chemother. 2009; 63(1): 161–166. doi: 10.1093/jac/dkn431 19008255

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden