Head impulse compensatory saccades: Visual dependence is most evident in bilateral vestibular loss

Autoři: Jacob M. Pogson aff001;  Rachael L. Taylor aff001;  Leigh A. McGarvie aff001;  Andrew P. Bradshaw aff001;  Mario D’Souza aff004;  Sean Flanagan aff005;  Jonathan Kong aff002;  G. Michael Halmagyi aff001;  Miriam S. Welgampola aff001
Působiště autorů: Royal Prince Alfred Hospital, Institute of Clinical Neuroscience, Camperdown, New South Wales, Australia aff001;  Faculty of Health and Medicine, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia aff002;  Department of Psychology, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia aff003;  Department of Clinical Research, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia aff004;  Otolaryngology, Head and Neck and Skull Base Surgery, St Vincent’s Hospital, Darlinghurst, New South Wales, Australia aff005;  Faculty of Medicine, University of NSW, Kensington, New South Wales, Australia aff006;  Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia aff007;  Department of Otolaryngology, Head & Neck Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia aff008
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227406


The normal vestibulo-ocular reflex (VOR) generates almost perfectly compensatory smooth eye movements during a ‘head-impulse’ rotation. An imperfect VOR gain provokes additional compensatory saccades to re-acquire an earth-fixed target. In the present study, we investigated vestibular and visual contributions on saccade production. Eye position and velocity during horizontal and vertical canal-plane head-impulses were recorded in the light and dark from 16 controls, 22 subjects after complete surgical unilateral vestibular deafferentation (UVD), eight subjects with idiopathic bilateral vestibular loss (BVL), and one subject after complete bilateral vestibular deafferentation (BVD). When impulses were delivered in the horizontal-canal plane, in complete darkness compared with light, first saccade frequency mean(SEM) reduced from 96.6(1.3)–62.3(8.9) % in BVL but only 98.3(0.6)–92.0(2.3) % in UVD; saccade amplitudes reduced from 7.0(0.5)–3.6(0.4) ° in BVL but were unchanged 6.2(0.3)–5.5(0.6) ° in UVD. In the dark, saccade latencies were prolonged in lesioned ears, from 168(8.4)–240(24.5) ms in BVL and 177(5.2)–196(5.7) ms in UVD; saccades became less clustered. In BVD, saccades were not completely abolished in the dark, but their amplitudes decreased from 7.3–3.0 ° and latencies became more variable. For unlesioned ears (controls and unlesioned ears of UVD), saccade frequency also reduced in the dark, but their small amplitudes slightly increased, while latency and clustering remained unchanged. First and second saccade frequencies were 75.3(4.5) % and 20.3(4.1) %; without visual fixation they dropped to 32.2(5.0) % and 3.8(1.2) %. The VOR gain was affected by vision only in unlesioned ears of UVD; gains for the horizontal-plane rose slightly, and the vertical-planes reduced slightly. All head-impulse compensatory saccades have a visual contribution, the magnitude of which depends on the symmetry of vestibular-function and saccade latency: BVL is more profoundly affected by vision than UVD, and second saccades more than first saccades. Saccades after UVD are probably triggered by contralateral vestibular function.

Klíčová slova:

Attention – Ears – Eye movements – Eyes – Learning – Reaction time – Reflexes – Vision


1. Sherrington CS. The Integrative action of the nervous system: Yale University Press; 1906.

2. Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. Journal of neurophysiology. 1971;34(4):635–60. Epub 1971/07/01. doi: 10.1152/jn.1971.34.4.635 5000362.

3. Halmagyi GM, Curthoys IS, Cremer PD, Henderson CJ, Todd MJ, Staples MJ, et al. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy. Experimental brain research. 1990;81(3):479–90. Epub 1990/01/01. doi: 10.1007/bf02423496 2226683.

4. Halmagyi GM, Curthoys IS. A clinical sign of canal paresis. Arch Neurol. 1988;45(7):737–9. Epub 1988/07/01. doi: 10.1001/archneur.1988.00520310043015 3390028.

5. Weber KP, Aw ST, Todd MJ, McGarvie LA, Curthoys IS, Halmagyi GM. Head impulse test in unilateral vestibular loss: vestibulo-ocular reflex and catch-up saccades. Neurology. 2008;70(6):454–63. Epub 2008/02/06. doi: 10.1212/01.wnl.0000299117.48935.2e 18250290.

6. Schubert MC, Zee DS. Saccade and vestibular ocular motor adaptation. Restorative neurology and neuroscience. 2010;28(1):9–18. Epub 2010/01/21. doi: 10.3233/RNN-2010-0523 20086279.

7. Peng GC, Zee DS, Minor LB. Phase-plane analysis of gaze stabilization to high acceleration head thrusts: a continuum across normal subjects and patients with loss of vestibular function. Journal of neurophysiology. 2004;91(4):1763–81. Epub 2003/12/06. doi: 10.1152/jn.00611.2002 14657187.

8. Cremer PD, Halmagyi GM, Aw ST, Curthoys IS, McGarvie LA, Todd MJ, et al. Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain: a journal of neurology. 1998;121 (Pt 4):699–716. Epub 1998/05/13. doi: 10.1093/brain/121.4.699 9577395.

9. Chen L, Todd M, Halmagyi GM, Aw S. Head impulse gain and saccade analysis in pontine-cerebellar stroke and vestibular neuritis. Neurology. 2014. Epub 2014/09/26. doi: 10.1212/wnl.0000000000000906 25253747.

10. Takahashi M, Shinoda Y. Brain Stem Neural Circuits of Horizontal and Vertical Saccade Systems and their Frame of Reference. Neuroscience. 2018;392:281–328. https://doi.org/10.1016/j.neuroscience.2018.08.027 30193861

11. Leigh RJ, Zee DS. The Neurology of Eye Movements. Fifth edition ed: Oxford University Press; 2015.

12. Pogson JM, Taylor RL, Bradshaw AP, McGarvie L, D’Souza M, Halmagyi GM, et al. The human vestibulo-ocular reflex and saccades: normal subjects and the effect of age. Journal of neurophysiology. 2019;122(1):336–49. doi: 10.1152/jn.00847.2018 31042447

13. Carpenter RH, Williams ML. Neural computation of log likelihood in control of saccadic eye movements. Nature. 1995;377(6544):59–62. Epub 1995/09/07. doi: 10.1038/377059a0 7659161.

14. Noorani I, Carpenter RHS. The LATER model of reaction time and decision. Neuroscience & Biobehavioral Reviews. 2016;64:229–51. https://doi.org/10.1016/j.neubiorev.2016.02.018.

15. Fischer B, Ramsperger E. Human express saccades: extremely short reaction times of goal directed eye movements. Experimental brain research. 1984;57(1):191–5. Epub 1984/01/01. doi: 10.1007/bf00231145 6519226.

16. Hyman R. Stimulus information as a determinant of reaction time. Journal of Experimental Psychology. 1953;45(3):188–96. doi: 10.1037/h0056940 13052851

17. Gold JI, Shadlen MN. Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Sciences. 2001;5(1):10–6. https://doi.org/10.1016/S1364-6613(00)01567-9 11164731

18. Carpenter RHS, Reddi BAJ, Anderson AJ. A simple two-stage model predicts response time distributions. The Journal of physiology. 2009;587(Pt 16):4051–62. doi: 10.1113/jphysiol.2009.173955 19564395

19. Waespe W, Henn V. Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Experimental brain research. 1977;27(5):523–38. Epub 1977/04/21. doi: 10.1007/bf00239041 404173.

20. Curthoys IS. Generation of the quick phase of horizontal vestibular nystagmus. Experimental brain research. 2002;143(4):397–405. doi: 10.1007/s00221-002-1022-z 11914784

21. Guitton D, Volle M. Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. Journal of neurophysiology. 1987;58(3):427–59. Epub 1987/09/01. doi: 10.1152/jn.1987.58.3.427 3655876.

22. Peng GCY, Minor LB, Zee DS. Gaze Position Corrective Eye Movements in Normal Subjects and in Patients with Vestibular Deficits. Annals of the New York Academy of Sciences. 2005;1039(1):337–48. doi: 10.1196/annals.1325.032 15826987

23. Van Nechel C, Bostan A, Duquesne U, Hautefort C, Toupet M. Visual Input Is the Main Trigger and Parametric Determinant for Catch-Up Saccades During Video Head Impulse Test in Bilateral Vestibular Loss. Frontiers in neurology. 2019;9(1138). doi: 10.3389/fneur.2018.01138 30662427

24. Lehnen N, Glasauer S, Jahn K, Weber KP. Head impulses in complete bilateral vestibular loss: catch-up saccades require visual input. Neurology. 2013;81(7):688–90. Epub 2013/07/19. doi: 10.1212/WNL.0b013e3182a08d36 23864312.

25. Weber KP, Aw ST, Todd MJ, McGarvie LA, Curthoys IS, Halmagyi GM. Horizontal head impulse test detects gentamicin vestibulotoxicity. Neurology. 2009;72(16):1417–24. Epub 2009/04/22. doi: 10.1212/WNL.0b013e3181a18652 19380701.

26. MacDougall HG, Curthoys IS. Plasticity during Vestibular Compensation: The Role of Saccades. Frontiers in neurology. 2012;3:21. Epub 2012/03/10. doi: 10.3389/fneur.2012.00021 22403569.

27. Halmagyi G, Curthoys I. Human compensatory slow eye movements in the absence of vestibular function. The vestibular system: Neurophysiologic and clinical research. 1987:471–9.

28. Rosengren SM, Colebatch JG, Young AS, Govender S, Welgampola MS. Vestibular evoked myogenic potentials in practice: methods, pitfalls and clinical applications. Clinical Neurophysiology Practice. 2019. https://doi.org/10.1016/j.cnp.2019.01.005.

29. Curthoys IS, Dai MJ, Halmagyi GM. Human ocular torsional position before and after unilateral vestibular neurectomy. Experimental brain research. 1991;85(1):218–25. doi: 10.1007/bf00230003 1884760

30. Strupp M, Kim JS, Murofushi T, Straumann D, Jen JC, Rosengren SM, et al. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Barany Society. Journal of vestibular research: equilibrium & orientation. 2017;27(4):177–89. Epub 2017/10/31. doi: 10.3233/ves-170619 29081426.

31. Welgampola MS, Taylor RL, Halmagyi GM. Video Head Impulse Testing. In: Lea J, Pothier D, editors. Vestibular Disorders. 82. Basel, Switzerland: Karger; 2019. p. 56–66.

32. Halmagyi GM, Chen L, MacDougall HG, Weber KP, McGarvie LA, Curthoys IS. The Video Head Impulse Test. Frontiers in neurology. 2017;8(258):258. Epub 2017/06/27. doi: 10.3389/fneur.2017.00258 28649224.

33. MacDougall HG, McGarvie LA, Halmagyi GM, Curthoys IS, Weber KP. The video Head Impulse Test (vHIT) detects vertical semicircular canal dysfunction. PloS one. 2013;8(4):e61488. Epub 2013/05/01. doi: 10.1371/journal.pone.0061488 23630593.

34. Mantokoudis G, Saber Tehrani AS, Kattah JC, Eibenberger K, Guede CI, Zee DS, et al. Quantifying the vestibulo-ocular reflex with video-oculography: nature and frequency of artifacts. Audiology & neuro-otology. 2015;20(1):39–50. Epub 2014/12/17. doi: 10.1159/000362780 25501133.

35. McGarvie LA, MacDougall HG, Halmagyi GM, Burgess AM, Weber KP, Curthoys IS. The Video Head Impulse Test (vHIT) of Semicircular Canal Function—Age-Dependent Normative Values of VOR Gain in Healthy Subjects. Frontiers in neurology. 2015;6:154. Epub 2015/07/29. doi: 10.3389/fneur.2015.00154 26217301.

36. Nyström M, Hooge I, Holmqvist K. Post-saccadic oscillations in eye movement data recorded with pupil-based eye trackers reflect motion of the pupil inside the iris. Vision research. 2013;92:59–66. https://doi.org/10.1016/j.visres.2013.09.009 24096093

37. Hooge I, Nyström M, Cornelissen T, Holmqvist K. The art of braking: Post saccadic oscillations in the eye tracker signal decrease with increasing saccade size. Vision research. 2015;112:55–67. https://doi.org/10.1016/j.visres.2015.03.015 25982715

38. Mardanbegi D, Killick R, Xia B, Wilcockson T, Gellersen H, Sawyer P, et al. Effect of aging on post-saccadic oscillations. Vision research. 2018;143:1–8. https://doi.org/10.1016/j.visres.2017.08.006 29197475

39. Martinez-Conde S, Otero-Millan J, Macknik SL. The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat Rev Neurosci. 2013;14(2):83–96. Epub 2013/01/19. doi: 10.1038/nrn3405 23329159.

40. R Core Team. R: A Language and Environment for Statistical Computing. 3.5.1 "Feather Spray" ed. Vienna, Austria: R Foundation for Statistical Computing; 2017. url: http://www.R-project.org/

41. Yan J, Fine J. Estimating equations for association structures. Stat Med. 2004;23(6):859–74; discussion 75–7,79–80. Epub 2004/03/18. doi: 10.1002/sim.1650 15027075.

42. Højsgaard S, Halekoh U, Yan J. The R Package geepack for Generalized Estimating Equations. Journal of Statistical Software; Vol 1, Issue 2 (2006). 2005. http://dx.doi.org/10.18637/jss.v015.i02

43. Robinson D, Hayes A. broom: Convert Statistical Analysis Objects into Tidy Tibbles. 0.5.0 ed2018. url: https://cran.r-project.org/package=broom

44. Bolker B, Robinson D. broom.mixed: Tidying Methods for Mixed Models. 0.2.3 ed2018. url: https://CRAN.R-project.org/package=broom.mixed

45. Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. 1.3.1 ed2018. url: https://cran.r-project.org/package=emmeans

46. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 3.1.0 ed. New York: Springer-Verlag; 2016. url: https://cran.r-project.org/package=ggplot2

47. Wickham H. Dplyr: A Grammar of Data Manipulation. 0.7.4 ed2017. url: https://cran.r-project.org/package=dplyr

48. Wickham H. tidyverse: Easily Install and Load the ‘Tidyverse’. 1.2.1 ed2017. url: https://cran.r-project.org/package=tidyverse

49. Hanley JA, Negassa A, Edwardes MDd, Forrester JE. Statistical Analysis of Correlated Data Using Generalized Estimating Equations: An Orientation. American journal of epidemiology. 2003;157(4):364–75. doi: 10.1093/aje/kwf215 12578807

50. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01

51. Barton K. MuMIn: Multi-Model Inference. 1.42.1 ed2018. url: https://CRAN.R-project.org/package=MuMIn

52. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution. 2013;4(2):133–42. doi: 10.1111/j.2041-210x.2012.00261.x

53. Colagiorgio P, Versino M, Colnaghi S, Quaglieri S, Manfrin M, Zamaro E, et al. New insights into vestibular-saccade interaction based on covert corrective saccades in patients with unilateral vestibular deficits. Journal of neurophysiology. 2017;117(6):2324–38. Epub 2017/04/14. doi: 10.1152/jn.00864.2016 28404827.

54. Eggers SD, De Pennington N, Walker MF, Shelhamer M, Zee DS. Short-term adaptation of the VOR: non-retinal-slip error signals and saccade substitution. Ann N Y Acad Sci. 2003;1004:94–110. Epub 2003/12/10. 14662451.

55. Lacour M, Dosso NY, Heuschen S, Thiry A, Van Nechel C, Toupet M. How Eye Movements Stabilize Posture in Patients With Bilateral Vestibular Hypofunction. Frontiers in neurology. 2018;9:744. doi: 10.3389/fneur.2018.00744 30279673

56. Berthoz A. The role of gaze in compensation of vestibular disfunction: the gaze substitution hypothesis. Progress in brain research. 1988;76:411–20. Epub 1988/01/01. doi: 10.1016/s0079-6123(08)64528-8 3064159.

57. Matiñó-Soler E, Rey-Martinez J, Trinidad-Ruiz G, Batuecas-Caletrio A, Pérez Fernández N. A new method to improve the imbalance in chronic unilateral vestibular loss: the organization of refixation saccades. Acta oto-laryngologica. 2016;136(9):894–900. doi: 10.3109/00016489.2016.1172730 27109262

58. Batuecas-Caletrio A, Rey-Martinez J, Trinidad-Ruiz G, Matino-Soler E, Cruz-Ruiz SS, Munoz-Herrera A, et al. Vestibulo-Ocular Reflex Stabilization after Vestibular Schwannoma Surgery: A Story Told by Saccades. Frontiers in neurology. 2017;8(15):15. Epub 2017/02/10. doi: 10.3389/fneur.2017.00015 28179894.

59. Trinidad-Ruiz G, Rey-Martinez J, Batuecas-Caletrio A, Matino-Soler E, Perez-Fernandez N. Visual Performance and Perception as a Target of Saccadic Strategies in Patients With Unilateral Vestibular Loss. Ear and hearing. 2018;39(6):1176–86. Epub 2018/03/27. doi: 10.1097/AUD.0000000000000576 29578887.

60. Mantokoudis G, Schubert MC, Tehrani AS, Wong AL, Agrawal Y. Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2014;35(1):148–54. Epub 2013/08/24. doi: 10.1097/MAO.0b013e3182956196 23965525.

61. Navari E, Cerchiai N, Casani AP. Assessment of Vestibulo-ocular Reflex Gain and Catch-up Saccades During Vestibular Rehabilitation. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2018;39(10):e1111–e7. Epub 2018/10/12. doi: 10.1097/MAO.0000000000002032 30303945.

62. Rey-Martinez J, Batuecas-Caletrio A, Matino E, Perez Fernandez N. HITCal: a software tool for analysis of video head impulse test responses. Acta oto-laryngologica. 2015;135(9):886–94. Epub 2015/04/11. doi: 10.3109/00016489.2015.1035401 25857220.

63. Muntaseer Mahfuz M, Schubert MC, Figtree WVC, Todd CJ, Migliaccio AA. Human Vestibulo-Ocular Reflex Adaptation Training: Time Beats Quantity. JARO. 2018. doi: 10.1007/s10162-018-00689-w 30251187

64. Mahfuz MM, Schubert MC, Figtree WVC, Todd CJ, Migliaccio AA. Human Vestibulo-Ocular Reflex Adaptation: Consolidation Time Between Repeated Training Blocks Improves Retention. JARO. 2018. doi: 10.1007/s10162-018-00686-z 30120621

65. Young AS, Taylor RL, McGarvie LA, Halmagyi GM, Welgampola MS. Bilateral sequential peripheral vestibulopathy. Neurology. 2016;86(15):1454–6. doi: 10.1212/WNL.0000000000002563 26968514

66. Cerchiai N, Navari E, Sellari-Franceschini S, Re C, Casani AP. Predicting the Outcome after Acute Unilateral Vestibulopathy: Analysis of Vestibulo-ocular Reflex Gain and Catch-up Saccades. Otolaryngology—head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2017;0(0):194599817740327. Epub 2017/11/08. doi: 10.1177/0194599817740327 29110566.

67. Schubert MC, Hall CD, Das V, Tusa RJ, Herdman SJ. Oculomotor strategies and their effect on reducing gaze position error. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 2010;31(2):228–31. Epub 2009/11/06. doi: 10.1097/MAO.0b013e3181c2dbae 19887975.

68. MacDougall HG, McGarvie LA, Halmagyi GM, Rogers SJ, Manzari L, Burgess AM, et al. A new saccadic indicator of peripheral vestibular function based on the video head impulse test. Neurology. 2016. doi: 10.1212/WNL.0000000000002827 27251884

69. Ellis AW, Schöne CG, Vibert D, Caversaccio MD, Mast FW. Cognitive Rehabilitation in Bilateral Vestibular Patients: A Computational Perspective. Frontiers in neurology. 2018;9:286. doi: 10.3389/fneur.2018.00286 29755404

70. Halmagyi GM, Gresty MA. Clinical signs of visual-vestibular interaction. Journal of neurology, neurosurgery, and psychiatry. 1979;42(10):934–9. Epub 1979/10/01. doi: 10.1136/jnnp.42.10.934 315999.

71. Rey-Martinez J, Yanes J, Esteban J, Sanz R, Martin-Sanz E. The Role of Predictability in Saccadic Eye Responses in the Suppression Head Impulse Test of Horizontal Semicircular Canal Function. Frontiers in neurology. 2017;8(536). doi: 10.3389/fneur.2017.00536 29093698

72. Therrien AS, Wolpert DM, Bastian AJ. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain: a journal of neurology. 2016;139(1):101–14. doi: 10.1093/brain/awv329 26626368

73. Mahfuz MM, Schubert MC, Figtree WVC, Todd CJ, Khan SI, Migliaccio AA. Optimal Human Passive Vestibulo-Ocular Reflex Adaptation Does Not Rely on Passive Training. JARO. 2018. doi: 10.1007/s10162-018-0657-9 29464411

74. Colagiorgio P, Bertolini G, Bockisch CJ, Straumann D, Ramat S. Multiple timescales in the adaptation of the rotational VOR. Journal of neurophysiology. 2015;113(9):3130–42. doi: 10.1152/jn.00688.2014 25744882

75. Sherrington CSS. Man on his Nature. Cambridge: Cambridge University Press; 1940 2009/007/20.

76. Reddi BAJ, Carpenter RHS. The influence of urgency on decision time. Nature neuroscience. 2000;3(8):827–30. doi: 10.1038/77739 10903577

77. Ron S, Robinson DA, Skavensk AA. Saccades and Quick Phase of Nystagmus. Vision research. 1972;12(12):2015–22. doi: 10.1016/0042-6989(72)90055-7 4629045

78. Jones GM. Predominance of Anti-Compensatory Oculomotor Response During Rapid Head Rotation. Aerospace medicine. 1964;35:965–8. Epub 1964/10/01. 14198661.

79. Ramaioli C, Colagiorgio P, Sağlam M, Heuser F, Schneider E, Ramat S, et al. The Effect of Vestibulo-Ocular Reflex Deficits and Covert Saccades on Dynamic Vision in Opioid-Induced Vestibular Dysfunction. PloS one. 2014;9(10):e110322. doi: 10.1371/journal.pone.0110322 25329150

80. Ramaioli C, Cuturi LF, Ramat S, Lehnen N, MacNeilage PR. Vestibulo-Ocular Responses and Dynamic Visual Acuity During Horizontal Rotation and Translation. Frontiers in neurology. 2019;10(321). doi: 10.3389/fneur.2019.00321 31024422

81. Wettstein VG, Weber KP, Bockisch CJ, Hegemann SC. Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy1. Journal of vestibular research: equilibrium & orientation. 2016;26(4):395–402. Epub 2016/11/05. doi: 10.3233/ves-160591 27814315.

82. Sjögren J, Fransson P-A, Karlberg M, Magnusson M, Tjernström F. Functional Head Impulse Testing Might Be Useful for Assessing Vestibular Compensation After Unilateral Vestibular Loss. Frontiers in neurology. 2018;9(979). doi: 10.3389/fneur.2018.00979 30510538

83. Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008;28(51):13929–37. Epub 2008/12/19. doi: 10.1523/JNEUROSCI.3470-08.2008 19091981.

84. Tian J, Ethier V, Shadmehr R, Fujita M, Zee DS. Some perspectives on saccade adaptation. Ann N Y Acad Sci. 2009;1164:166–72. Epub 2009/08/04. doi: 10.1111/j.1749-6632.2009.03853.x 19645895.

85. Herzfeld DJ, Vaswani PA, Marko MK, Shadmehr R. A memory of errors in sensorimotor learning. Science (New York, NY). 2014;345(6202):1349–53. doi: 10.1126/science.1253138 25123484

86. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nature neuroscience. 2018;21(5):736–43. Epub 2018/04/18. doi: 10.1038/s41593-018-0136-y 29662213.

87. Kojima Y, Fuchs AF, Soetedjo R. Adaptation and adaptation transfer characteristics of five different saccade types in the monkey. Journal of neurophysiology. 2015;114(1):125–37. Epub 2015/04/10. doi: 10.1152/jn.00212.2015 25855693.

88. Kojima Y, Soetedjo R. Elimination of the error signal in the superior colliculus impairs saccade motor learning. Proc Natl Acad Sci U S A. 2018;115(38):E8987–E95. Epub 2018/09/07. doi: 10.1073/pnas.1806215115 30185563.

89. Sparks D, Rohrer WH, Zhang Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision research. 2000;40(20):2763–77. doi: 10.1016/s0042-6989(00)00133-4 10960650

90. Marino RA, Levy R, Munoz DP. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus. Journal of neurophysiology. 2015;114(2):879–92. Epub 2015/06/13. doi: 10.1152/jn.00047.2015 26063770.

91. Quaia C, Lefevre P, Optican LM. Model of the control of saccades by superior colliculus and cerebellum. Journal of neurophysiology. 1999;82(2):999–1018. Epub 1999/08/13. doi: 10.1152/jn.1999.82.2.999 10444693.

92. Optican LM, Quaia C. Distributed model of collicular and cerebellar function during saccades. Ann N Y Acad Sci. 2002;956:164–77. Epub 2002/04/19. doi: 10.1111/j.1749-6632.2002.tb02817.x 11960802.

Článek vyšel v časopise


2020 Číslo 1