Phylogeographic analyses point to long-term survival on the spot in micro-endemic Lycian salamanders


Autoři: Michael Veith aff001;  Bayram Göçmen aff002;  Konstantinos Sotiropoulos aff003;  Karolos Eleftherakos aff004;  Stefan Lötters aff001;  Olaf Godmann aff005;  Mert Karış aff002;  Anil Oğuz aff002;  Sarah Ehl aff001
Působiště autorů: Department of Biogeography, Trier University, Universitätsring, Trier, Germany aff001;  Ege University, Faculty of Science, Department of Biology, Zoology Section, Bornova, İzmir, Turkey aff002;  Department of Biological Applications & Technology, University of Ioannina, Ioannina, Greece aff003;  Section of Zoology-Marine Biology, Department of Biology, University of Athens, Athens, Greece aff004;  Hauptstraße, Niedernhausen, Germany aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226326

Souhrn

Lycian salamanders (genus Lyciasalamandra) constitute an exceptional case of micro-endemism of an amphibian species on the Asian Minor mainland. These viviparous salamanders are confined to karstic limestone formations along the southern Anatolian coast and some islands. We here study the genetic differentiation within and among 118 populations of all seven Lyciasalamandra species across the entire genus’ distribution. Based on circa 900 base pairs of fragments of the mitochondrial 16SrDNA and ATPase genes, we analysed the spatial haplotype distribution as well as the genetic structure and demographic history of populations. We used 253 geo-referenced populations and CHELSA climate data to infer species distribution models which we projected on climatic conditions of the Last Glacial Maximum (LGM). Within all but one species, distinct phyloclades were identified, which only in parts matched current taxonomy. Most haplotypes (78%) were private to single populations. Sometimes population genetic parameters showed contradicting results, although in several cases they indicated recent population expansion of phyloclades. Climatic suitability of localities currently inhabited by salamanders was significantly lower during the LGM compared to recent climate. All data indicated a strong degree of isolation among Lyciasalamandra populations, even within phyloclades. Given the sometimes high degree of haplotype differentiation between adjacent populations, they must have survived periods of deteriorated climates during the Quaternary on the spot. However, the alternative explanation of male biased dispersal combined with a pronounced female philopatry can only be excluded if independent nuclear data confirm this result.

Klíčová slova:

Haplotypes – Mitochondria – Paleoclimatology – Phylogenetic analysis – Phylogeography – Population genetics – Salamanders – Species diversity


Zdroje

1. Buckley LB, Jetz W. Environmental and historical constraints on global patterns of amphibian richness. Proc Roy Soc B. 2007; 274: 1167–1173.

2. Zeisset I, Beebee TJC. Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity. 2008; 101: 109–119. doi: 10.1038/hdy.2008.30 18493262

3. Veith M, Baran I, Godmann O, Kiefer A, Öz M, Tunc MR. A revision of population designation and geographic distribution of Mertensiella luschani (Steindachner, 1891). Zool Middle East. 2001; 22: 67–82.

4. Johannesen J, Johannesen B, Baran I, Rizvan-Tunc M, Kiefer A, Veith M. Distortion of symmetrical introgression in a hybrid zone: evidence for locus-specific selection and uni-directional range expansion. J Evol Biol. 2006; 19: 705–716. doi: 10.1111/j.1420-9101.2005.01064.x 16674567

5. Ehl S, Vences M, Veith M. Reconstructing evolution at the community level: a case study on Mediterranean amphibians. Mol Phyl Evol. Re-submitted.

6. Veith M, Göçmen B, Sotiropoulo K, Kieren S, Godmann O, Steinfartz S. Seven at one blow: The origin of major lineages of the viviparous Lycian salamanders (Lyciasalamandra) was triggered by a single paleo-historic event. Amph-Rept. 2016; 37: 373–387.

7. Weisrock DW, Macey JR, Ugurtas IH, Larson A, Papenfuss TJ. Molecular phylogenetics and historical biogeography among Salamandrids of the ‘‘true” salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Mol Phyl Evol. 2001; 18: 434–448.

8. Veith M, Lipscher E, Öz M, Kiefer A, Baran I, Polymeni RM. et al. Cracking the nut: Geographical adjacency of sister taxa supports vicariance in a polytomic salamander clade in the absence of node support. Mol Phyl Evol. 2008; 47: 916–931

9. Akman B, Godmann O. A new subspecies of Lyciasalamandra antalyana (Amphibia: Salamandridae) from the Lycian Coast, Turkey. Salamandra 2014; 50: 125–132.

10. Göçmen B, Arikan H, Yalçinkaya D. A new Lycian salamander, threatened with extinction, from the Göynük Canyon (Antalya, Anatolia), Lyciasalamandra irfani n. sp. (Urodela: Salamandridae). NW J Zool. 2011; 7: 151–160.

11. Göçmen B, Akman B, Lyciasalamandra arikani n. sp. & L. yehudahi n. sp. (Amphibia: Salamandridae), two new Lycian salamanders from Southwestern Anatolia. NW J Zool. 2012; 8: 181–194.

12. Üzüm N, Avci A, Bozkurt E, Olgun K. A new subspecies of Lyciasalamandra flavimembris (Urodela: Salamandridae) from Muğla, southwestern Turkey. Turk J Zool. 2015; 39: 328–334.

13. Yildiz MZ, Akman B. A new subspecies of Atif’s Lycian Salamander, Lyciasalamandra atifi (Başoğlu, 1967), from Alanya (Antalya, Turkey). Herpetozoa. 2015; 8: 3–13.

14. Oguz MA, Göcmen B, Yalcinkaya D. Comparison of Lyciasalamandra atifi (BAŞOĞLU, 1967) (Urodela: Salamandridae) populations with description of three new subspecies from Antalya province. SW J Hortic Biol Environ. 2016; 7: 61–113.

15. Tok CV, Afsar M, Yakın BY. A new subspecies, Lyciasalamandra atifi oezi n. ssp. (Urodela: Salamandridae) from Gazipaşa (Antalya, Turkey). Ecol Montenegrina. 2016; 9: 38–45.

16. Göçmen B, Ehl S, Karış M, Thiesmeier B, Kordges T. Molecular and morphological investigations on the Fazıla’s Lycian salamander Lyciasalamandra fazilae (Amphibia: Salamandridae) populations and description of a new subspecies. Zool Middle East. 2018; 64: 304–314.

17. Hays JD, Imbrie J, Shackleton NJ. Variation in the Earth’s orbit: pacemaker of the ice age. Science. 1976; 194: 1121–1132. doi: 10.1126/science.194.4270.1121 17790893

18. Andersen BG, Borns HW. The ice age world. Oslo: Scandinavia University Press; 1994.

19. Blondel J, Aronson J, Bodiou J-Y, Boeuf G. The Mediterranean region: Biological diversity in space and time. 2nd edition. Oxford/ New York: Oxford University Press; 2010.

20. Lymberakis P, Poulakakis N. Three continents claiming an archipelago: The evolution of Aegean’s herpetofaunal diversity. Diversity. 2010; 2: 233–255.

21. Vanderplank SE, Moreira-Muñoz A, Hobohm C, Pils G, Noroozi J, Clark VR et al. Endemism in Mainland Regions–Case Studies. In: Hobohm C, editor. Endemism in Vascular Plants. Dordrecht: Springer; 2014. pp. 205–308.

22. Wilson RCL, Drury SA, Chapman JL. The Great Ice Age. 1st ed. London, New York. The Open University; 1999.

23. Veith M, Schmidtler FJ, Kosuch J, Baran I, Seitz A. Paleoclimatic changes explain Anatolian mountain frogs: evolution: a test for alternating vicariance and dispersal events. Mol Ecol. 2003; 12: 185–199. doi: 10.1046/j.1365-294x.2003.01714.x 12492887

24. Atalay I, Efe R, Öztürk M. Effects of topography and climate on the ecology of Taurus Mountains in the Mediterranean region of Turkey. Procedia–Soc Behav Sci. 2014; 120: 142–156.

25. Coope GR. The response of insect faunas to glacial-interglacial climatic fluctuations. Phil Trans R Soc London B. 1994; 344: 19–26.

26. Rödder D, Lötters S, Öz M, Bogaerts S, Eleftherakos K, Veith M. A novel method to calculate climatic niche similarity among species with restricted ranges–the case of terrestrial Lycian salamanders. Org Div Evol. 2011; 11: 409–423.

27. Sinsch U, Böcking H, Leskovar C, Öz M, Veith M. Demography and lifetime growth patterns in Lyciasalamandra spp.: Living underground attenuates among-species variation. Zool Anz. 2017; 269: 48–56.

28. Palumbi S, Martin A, Romano S, McMillan OW, Stice L, Grabowski G. The Simple Fool’s Guide to PCR. Version 2. Honolulu:,HI: Department of Zoology and Kewalo Marine Laboratory, University of Hawai; 2002.

29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772–780. doi: 10.1093/molbev/mst010 23329690

30. Berger MP, Munson PJ. A novel randomized iterative strategy for aligning multiple protein sequences. Bioinformatics 1991; 7: 479–484.

31. Gotoh O. Optimal alignment between groups of sequences and its application to multiple sequence alignment. Computer applications in the biosciences. CABIOS. 1993; 9: 361–370. doi: 10.1093/bioinformatics/9.3.361 8324637

32. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970; 48. 443–453. doi: 10.1016/0022-2836(70)90057-4 5420325

33. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17: 564–577.

34. Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004; 20: 289–290. doi: 10.1093/bioinformatics/btg412 14734327

35. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2016.

36. Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes. 2007; 7: 965–968.

37. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017. 34: 772–773. doi: 10.1093/molbev/msw260 28013191

38. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE. et al. DnaSP v.6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol. 2017; 34: 3299–3302. doi: 10.1093/molbev/msx248 29029172

39. Rogers AR, Harpending HC. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992; 9:552–69. doi: 10.1093/oxfordjournals.molbev.a040727 1316531

40. Tajima F. Statistical method for testing the neutral mutation hypothesis. Genetics. 1989; 123: 585–95. 2513255

41. Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997; 147: 915–925. 9335623

42. Ramos-Onsins SE, Rozas J. Statistical properties of new neutrality tests against population growth. Mol Biol Evol. 2002; 19: 2092–2100. doi: 10.1093/oxfordjournals.molbev.a004034 12446801

43. Harpending HC, Sherry ST, Rogers AR, Stoneking M. Genetic structure of ancient human populations. Current Anthr. 1993; 34: 483–496.

44. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005; 22: 1185–1192. doi: 10.1093/molbev/msi103 15703244

45. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PloS Comput Biol. 2014; 10: e1003537. doi: 10.1371/journal.pcbi.1003537 24722319

46. Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol. 2017; 17: 42. doi: 10.1186/s12862-017-0890-6 28166715

47. Pons O, Petit RJ. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics. 1996; 144: 1237–1245. 8913764

48. Excoffier L, Smousse P, Quattro J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992; 131: 479–491. 1644282

49. Excoffier L, Laval G, Schneider S. Arelquin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005; 1: 47–50.

50. Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984; 38: 1358–1370. doi: 10.1111/j.1558-5646.1984.tb05657.x 28563791

51. Guo SW, Thompson EA. Performing the exact test of Hardy–Weinberg proportions for multiple alleles. Biometrics. 1992; 48: 361–371. 1637966

52. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19: 1572–1574. doi: 10.1093/bioinformatics/btg180 12912839

53. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012, 61: 539–542. doi: 10.1093/sysbio/sys029 22357727

54. Wertheim JO, Sanderson MJ, Worobey M, Bjork A. Relaxed molecular clocks, the bias–variance trade-off, and the quality of phylogenetic inference. Syst Biol. 2010, 59: 1–8. doi: 10.1093/sysbio/syp072 20525616

55. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30: 1312–1313. doi: 10.1093/bioinformatics/btu033 24451623

56. Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000; 9: 1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x 11050560

57. Franklin J. Mapping species distributions. Spatial inference and prediction. Cambridge/New York: Cambridge University Press; 2010.

58. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A. Effects of sample size on the performance of species distribution models. Div Dist. 2008; 2008: 14: 763–773.

59. Proosdij ASJ van Sosef MSM, Wieringa JJ, Raes N. Minimum required number of specimen records to develop accurate species distribution models. Ecography. 2016; 38: 542–552. doi: 10.1002/hed.23929

60. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017; 4: 170122. doi: 10.1038/sdata.2017.122 28872642

61. Booth TH, Nix HA, Busby JR, Hutchinson MF, Franklin J. bioclim. The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Div Dist. 2014; 20: 1–9.

62. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity. A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36: 27–46.

63. Klewen R. Die Landsalamander Europas. 2nd edition. Wittenberg Lutherstadt: Die Neue Brehm-Bücherei; 584. 1991.

64. Varela S, Lima-Ribeiro KS, Terribile LC. A short guide to the climatic variables of the Last Glacial Maximum for biogeographers. PLoS ONE. 2015; 10(6): e0129037 doi: 10.1371/journal.pone.0129037 26068930

65. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006; 190: 231–259.

66. Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: an open‐source release of Maxent. Ecography. 2017; 40: 887–893.

67. Yackulic CB, Chandler R, Zipkin EF, Royle J, Nichols JD, Campbell EH et al. Presence-only modelling using Maxent: when can we trust the inferences? Methods Ecol Evol. 2013; 4: 236–243.

68. Merow C, Smith MJ, Silander JA. A practical guide to MaxEnt for modeling species’ distributions. What it does, and why inputs and settings matter. Ecography. 2013; 36: 1058–1069.

69. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006; 29: 129–151.

70. Phillips SJ, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008; 31: 161–175.

71. Elith J, Kearney M, Phillips S. The art of modelling range-shifting species. Meth Ecol Evol. 2010; 1: 330–342.

72. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Div Dist. 2011; 17: 43–57.

73. Warton D, Aarts G. Advancing our thinking in presence-only and used-available analysis. J Anim Ecol. 2013; 82: 1125–1134. doi: 10.1111/1365-2656.12071 23488567

74. Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol Model. 2013; 269: 9–17.

75. Swets J. Measuring the accuracy of diagnostic systems. Science. 1988; 240: 1285–1293. doi: 10.1126/science.3287615 3287615

76. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006; 43: 1223–1232.

77. Eleftherakos K, Sotiropoulos K, Polymeni RM. Conservation units in the insular endemic salamander Lyciasalamandra helverseni (Urodela, Salamandridae). Ann Zool Fenn. 2007; 44:387–399.

78. Avise JC, Arnoldt J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst. 1987; 18:489–522.

79. Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel Set al. Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol Phyl Evol. 2013; 68: 657–670.

80. Vences M, Sarasola-Puente V, Sanchez E, Amat F, Hauswaldt JS. Diversity and distribution of deep mitochondrial lineages of the common frog, Rana temporaria, in northern Spain. Salamandra. 2017; 53: 25–33.

81. Teixeira J, Goncalves H, Ferrand N, García-París M, Recuero E. Mitochondrial phylogeography of the Iberian endemic frog Rana iberica, with implications for its conservation. Current Zool. 2018; 64: 755–764.

82. Dufresnes CM, Litvinchuk S, Leuenberger J, Ghali K, Zinenko O, Stöck M, et al. Evolutionary melting pots: A biodiversity hotspot shaped by ring diversifications around the Black Sea in the Eastern tree frog (Hyla orientalis). Mol Ecol. 2016; 25: 4285–4300. doi: 10.1111/mec.13706 27220555

83. Martinez-Solana I, Teixeira J, Buckley D., García-Paris M. Mitochondrial DNA phylogeography of Lissotriton boscai (Caudata, Salamandridae): Evidence for old, multiple refugia in an Iberian endemic. Mol Ecol. 2006; 15: 3375–3388. doi: 10.1111/j.1365-294X.2006.03013.x 16968276

84. Recuero E, García-París M. Evolutionary history of Lissotriton helveticus, multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol Phyl Evol. 2011; 60: 170–182.

85. Dinis M, Merabet K, Martínez-Freiría F, Steinfartz S, Vences M, Burgon JD, et al. Allopatric diversification and melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol Phyl Ecol. 2019; 130: 81–91.

86. Taberlet P, Fumagalli L, Wust–Saucy AG, Cosson, JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998; 7: 453–464. doi: 10.1046/j.1365-294x.1998.00289.x 9628000

87. Hewitt GM. The structure of biodiversity—insights from molecular phylogeography. Front Zool. 2004; 1: 1–22. doi: 10.1186/1742-9994-1-1

88. Avise JC. Phylogeography. Cambridge/London: Harvard University Press; 2000.

89. Rodríguez A, Börner M, Pabijan M, Gehara M, Haddad CFB, Vences M. Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol Ecol. 2015; 29: 765–785.

90. Crottini A, Brown JL, Mercurio V, Glaw F, Vences M, Andreone F. Phylogeography of the poison frog Mantella viridis (Amphibia: Mantellidae) reveals chromatic and genetic differentiation across ecotones in northern Madagascar. J Zool Syst Evol Res. 2012; 50: 305–314.

91. Templeton AR, Routman E, Phillips CA. Separating population structure from population history: a cladistic analysis of thegeographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics. 1995; 140: 767–782. 7498753

92. Müller C. Late Miocene to recent Mediterranean biostratigraphy and paleoenvironments based on calcareous nannoplankton. In: Stanley DJ, Wezel F-C, editors. Geological Evolution of the Mediterranean Basin. New York: Springer; 1985. pp. 458–471.

93. Hewitt G. The genetic legacy of the quaternary ice ages. Nature. 2000; 405: 907–913. doi: 10.1038/35016000 10879524

94. Beheregaray LB. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol. 2008; 17: 3754–3774. doi: 10.1111/j.1365-294X.2008.03857.x 18627447

95. Mazza PPA, Lovari S, Masini F, Masseti M, Rustioni M. A multidisciplinary approach to the analysis of multifactorial land mammal colonization of islands: BioScience. 2013; 63: 939–951.

96. Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008; 23: 564–571. doi: 10.1016/j.tree.2008.06.010 18722689

97. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al. Extinction risk from climate change. Nature. 2004; 427: 145–148. doi: 10.1038/nature02121 14712274

98. Skourtanioti E, Kapli P, Ilgaz Ç, Kumlutaş Y, Avcı A, Ahmadzadeh F, Crnobrnja-Isailović J, Gherghel I, Lymberakis P, Poulakakis N. A reinvestigation of phylogeny and divergence times of the Ablepharus kitaibelii species complex (Sauria, Scincidae) based on mtDNA and nuDNA genes. Mol Phyl Evol. 2016; 103: 199–214.

99. Helfer V, Broquet T, Fumagali L. Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol Ecol. 2012; 21: 4706–4720. doi: 10.1111/j.1365-294X.2012.05742.x 22934886

100. Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004; 13: 729–744. doi: 10.1046/j.1365-294x.2003.02063.x 15012752

101. Alho JS, Herczeg G, Söderman F, Laurila A, Jönsson KI, Merilä J. Increasing melanism along a latitudinal gradient in a widespread amphibian: local adaptation, ontogenic or environmental plasticity? BMC Evol Biol. 2010; 10: 317. doi: 10.1186/1471-2148-10-317 20964816

102. Urban MC, Richardson JL, Freidenfels NA. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evol Applic. 2014; 7: 88–103.

103. Mayr E. Systematics and the origin of species. New York: Columbia University Press; 1942.


Článek vyšel v časopise

PLOS One


2020 Číslo 1