Short treatment with antalarmin alters adrenal gland receptors in the rat model of endometriosis

Autoři: Annelyn Torres-Reverón aff001;  Maahrose Rana aff002;  Varesh Gorabi aff002;  Leslie L. Rivera-Lopez aff003;  Caroline B. Appleyard aff004
Působiště autorů: DHR Health Institute for Research and Development, Edinburg, Texas, United States of America aff001;  Dept. of Biomedical Sciences, University of Texas at Rio Grande Valley, Edinburg, Texas, United States of America aff002;  Dept. Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, Texas, United States of America aff003;  Division of Basic Sciences, Ponce Health Sciences University—Ponce Research Institute, Ponce, Puerto Rico, United States of America aff004;  Dept. of Internal Medicine, Ponce Health Sciences University, School of Medicine, Ponce, Puerto Rico, United States of America aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Endometriosis is a chronic inflammatory disorder in which endometrial tissue is found outside the uterine cavity. Previous reports suggest that there is a dysregulation of the hypothalamic pituitary adrenal axis during the progression of endometriosis. Our previous report showed that a short-term treatment with antalarmin, a corticotrophin releasing hormone receptor type 1 (CRHR1) antagonist decreases the number and size of endometriotic vesicles in the auto-transplantation rat model of endometriosis. Our current goal was to examine the mRNA expression of intra-adrenal receptors to better understand the mechanisms of the hypothalamic pituitary adrenal (HPA) axis involvement in endometriosis. We used two groups of female rats. The first received sham surgery or endometriosis surgery before collecting the adrenals after 7 days of the disease progression. The second group of animals received endometriosis surgery and a treatment of either vehicle or antalarmin (20 mg/kg, i.p.) during the first 7 days after endometriosis induction and then the disease was allowed to progress until day 60. Rats with sham surgery served as controls. Results showed that the mRNA expression of the mineralocorticoid (MRC2) receptor was lower in the rats after 7 days of endometriosis surgery and in rats with endometriosis that received antalarmin. In addition, the CRHR1 was significantly elevated in animals that received antalarmin and this was counteracted by a non-significant elevation in CRHR2 mRNA. The glucocorticoid receptor mRNA within the adrenals was not affected by endometriosis or antalarmin treatment. This report is one of the first to explore intra-adrenal mRNA for receptors involved in the HPA axis signaling as well as in the sympatho-adrenal signaling, calling for additional research towards understanding the role of the adrenal glands in chronic inflammatory diseases such as endometriosis.

Klíčová slova:

Adrenal glands – Catecholamines – Cortisol – Hormones – Pituitary gland – Secretion – Surgical and invasive medical procedures – Vesicles


1. Kyrous I, Tsigos C. Adrrenal Glands: Diagnostic Aspects and Surgical Treatment. Linos D, van Heerden J, editors. Springer; 2005.

2. Nussdorfer GG. Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol Rev. 1996;48: 495–530. 8981564

3. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol. 2016;6: 603–621. doi: 10.1002/cphy.c150015 27065163

4. Briassoulis G, Damjanovic S, Xekouki P, Lefebvre H, Stratakis CA. The glucocorticoid receptor and its expression in the anterior pituitary and the adrenal cortex: a source of variation in hypothalamic-pituitary-adrenal axis function; implications for pituitary and adrenal tumors. Endocr Pract. 2011;17: 941–948. doi: 10.4158/EP11061.RA 21742609

5. Deng Q, Riquelme D, Trinh L, Low MJ, Tomic M, Stojilkovic S, et al. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors. Endocrinology. 2015;156: 3215–3227. doi: 10.1210/EN.2015-1265 26121342

6. Walker JJ, Spiga F, Gupta R, Zhao Z, Lightman SL, Terry JR. Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. J R Soc Interface. 2015;12: 20140875. doi: 10.1098/rsif.2014.0875 25392395

7. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol. 2014;4: 965–994. doi: 10.1002/cphy.c130044 24944027

8. Muller MB, Preil J, Renner U, Zimmermann S, Kresse AE, Stalla GK, et al. Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. Endocrinology. 2001;142: 4150–4153. doi: 10.1210/endo.142.9.8491 11517194

9. Fukuda T, Takahashi K, Suzuki T, Saruta M, Watanabe M, Nakata T, et al. Urocortin 1, urocortin 3/stresscopin, and corticotropin-releasing factor receptors in human adrenal and its disorders. J Clin Endocrinol Metab. 2005;90: 4671–4678. doi: 10.1210/jc.2005-0090 15914529

10. Bruhn TO, Engeland WC, Anthony EL, Gann DS, Jackson IM. Corticotropin-releasing factor in the adrenal medulla. Ann N Y Acad Sci. 1987;512: 115–128. doi: 10.1111/j.1749-6632.1987.tb24954.x 3502062

11. Edwards A V, Jones CT. Secretion of corticotrophin releasing factor from the adrenal during splanchnic nerve stimulation in conscious calves. J Physiol. 1988;400: 89–100. doi: 10.1113/jphysiol.1988.sp017112 2843642

12. Minamino N, Uehara A, Arimura A. Biological and immunological characterization of corticotropin-releasing activity in the bovine adrenal medulla. Peptides. 1988;9: 37–45. doi: 10.1016/0196-9781(88)90007-1 2834703

13. Bagdy G, Calogero AE, Szemeredi K, Chrousos GP, Gold PW. Effects of cortisol treatment on brain and adrenal corticotropin-releasing hormone (CRH) content and other parameters regulated by CRH. Regul Pept. 1990;31: 83–92. doi: 10.1016/0167-0115(90)90111-9 2176309

14. Naito Y, Fukata J, Nakaishi S, Nakai Y, Hirai Y, Tamai S, et al. Chronic effects of interleukin-1 on hypothalamus, pituitary and adrenal glands in rat. Neuroendocrinology. 1990;51: 637–641. doi: 10.1159/000125404 2163496

15. Mazzocchi G, Malendowicz LK, Markowska A, Nussdorfer GG. Effect of hypophysectomy on corticotropin-releasing hormone and adrenocorticotropin immunoreactivities in the rat adrenal gland. Mol Cell Neurosci. 1994;5: 345–349. doi: 10.1006/mcne.1994.1041 7804604

16. Starr LR, Dienes K, Li YI, Shaw ZA. Chronic stress exposure, diurnal cortisol slope, and implications for mood and fatigue: Moderation by multilocus HPA-Axis genetic variation. Psychoneuroendocrinology. 2019;100: 156–163. doi: 10.1016/j.psyneuen.2018.10.003 30340064

17. Petrelluzzi KFS, Garcia MC, Petta CA, Grassi-Kassisse DM, Spadari-Bratfisch RC. Salivary cortisol concentrations, stress and quality of life in women with endometriosis and chronic pelvic pain. Stress. 2008;11: 390–397. doi: 10.1080/10253890701840610 18800310

18. Quiñones M, Urrutia R, Torres-Reverón A, Vincent K, Flores I. Anxiety, coping skills and hypothalamus-pituitary-adrenal (HPA) axis in patients with endometriosis. J Reprod Biol Heal. 2015;3: 2. doi: 10.7243/2054-0841-3-2 26900480

19. van Aken M, Oosterman J, van Rijn T, Ferdek M, Ruigt G, Kozicz T, et al. Hair cortisol and the relationship with chronic pain and quality of life in endometriosis patients. Psychoneuroendocrinology. 2018;89: 216–222. doi: 10.1016/j.psyneuen.2018.01.001 29414035

20. Miller R, Stalder T, Jarczok M, Almeida DM, Badrick E, Bartels M, et al. Psychoneuroendocrinology The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies. Psychoneuroendocrinology. 2016;73: 16–23. doi: 10.1016/j.psyneuen.2016.07.201 27448524

21. Sugaya N, Izawa S, Kimura K, Ogawa N, Yamada KC, Shirotsuki K, et al. Adrenal hormone response and psychophysiological correlates under psychosocial stress in individuals with irritable bowel syndrome. Int J Psychophysiol. 2012;84: 39–44. doi: 10.1016/j.ijpsycho.2012.01.006 22251450

22. Torres-Reveron A, Rivera-Lopez LL, Flores I, Appleyard CB. Antagonizing the corticotropin releasing hormone receptor 1 with antalarmin reduces the progression of endometriosis. PLoS One. 2018;13: e0197698. doi: 10.1371/journal.pone.0197698 30427841

23. Dermitzaki E, Tsatsanis C, Minas V, Chatzaki E, Charalampopoulos I, Venihaki M, et al. Corticotropin-Releasing Factor (CRF) and the Urocortins Differentially Regulate Catecholamine Secretion in Human and Rat Adrenals, in a CRF Receptor Type-Specific Manner. Endocrinology. 2007;148: 1524–1538. doi: 10.1210/en.2006-0967 17194738

24. Cuevas M, Flores I, Thompson KJ, Ramos-Ortolaza DL, Torres-Reveron A, Appleyard CB. Stress exacerbates endometriosis manifestations and inflammatory parameters in an animal model. Reprod Sci. 2012;19: 851–62. Available: doi: 10.1177/1933719112438443 22527982

25. Appleyard CB, Cruz ML, Hernandez S, Thompson KJ, Bayona M, Flores I. Stress management affects outcomes in the pathophysiology of an endometriosis model. Reprod Sci. 2015;22: 431–441. doi: 10.1177/1933719114542022 25015902

26. Long Q, Liu X, Qi Q, Guo S-W. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor beta2. Hum Reprod. 2016;31: 2506–2519. doi: 10.1093/humrep/dew237 27664956

27. Torres-Reverón A, Rivera LL, Flores I, Appleyard CB. Environmental Manipulations as an Effective Alternative Treatment to Reduce Endometriosis Progression. Reprod Sci. 2017;25: 193371911774137. doi: 10.1177/1933719117741374 29137551

28. Johnson PD, Besselsen DG. Practical aspects of experimental design in animal research. ILAR J. 2002;43: 202–206. doi: 10.1093/ilar.43.4.202 12391395

29. Meyer EJ, Nenke MA, Rankin W, Lewis JG, Torpy DJ. Corticosteroid-Binding Globulin: A Review of Basic and Clinical Advances. Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab. 2016;48: 359–371. doi: 10.1055/s-0042-108071 27214312

30. Meyer EJ, Nenke MA, Lewis JG, Torpy DJ. Corticosteroid-binding globulin: acute and chronic inflammation. Expert Rev Endocrinol Metab. 2017;12: 241–251. doi: 10.1080/17446651.2017.1332991 30058887

31. Verbeeten KC, Ahmet AH. The role of corticosteroid-binding globulin in the evaluation of adrenal insufficiency. J Pediatr Endocrinol Metab. 2018;31: 107–115. doi: 10.1515/jpem-2017-0270 29194043

32. Hill LA, Bodnar TS, Weinberg J, Hammond GL. Corticosteroid-binding globulin is a biomarker of inflammation onset and severity in female rats. J Endocrinol. 2016;230: 215–225. doi: 10.1530/JOE-16-0047 27418032

33. Misao R, Hori M, Ichigo S, Fujimoto J, Tamaya T. Levels of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) messenger ribonucleic acid (mRNAs) in ovarian endometriosis. Reprod Nutr Dev. 1995/01/01. 1995;35: 155–165. Available: doi: 10.1051/rnd:19950204 7734053

34. Garrido N, Navarro J, Garcia-Velasco J, Remoh J, Pellice A, Simon C. The endometrium versus embryonic quality in endometriosis-related infertility. Hum Reprod Update. 2002/02/28. 2002;8: 95–103. Available: doi: 10.1093/humupd/8.1.95 11866246

35. Laganà AS, Garzon S, Franchi M, Casarin J, Gullo G. Translational animal models for endometriosis research: a long and windy road. 2018;6: 1–5. doi: 10.21037/atm.2018.08.24 30596061

36. Vernon MW, Wilson EA. Studies on the surgical induction of endometriosis in the rat. Fertil Steril. 1985;44: 684–694. 4054348

37. Moon CE, Bertero MC, Curry TE, London SN, Muse KN, Sharpe KL, et al. The presence of luteinized unruptured follicle syndrome and altered folliculogenesis in rats with surgically induced endometriosis. Am J Obstet Gynecol. 1993;169: 676–682. doi: 10.1016/0002-9378(93)90642-v 8372879

38. Cason AM, Samuelsen CL, Berkley KJ. Estrous changes in vaginal nociception in a rat model of endometriosis. Horm Behav. 2003;44: 123–131. doi: 10.1016/s0018-506x(03)00121-1 13129484

39. Berkley KJ, McAllister SL, Accius BE, Winnard KP. Endometriosis-induced vaginal hyperalgesia in the rat: effect of estropause, ovariectomy, and estradiol replacement. Pain. 2007;132 Suppl: S150–9. doi: 10.1016/j.pain.2007.09.022 17959309

40. Konno R, Fujiwara H, Netsu S, Odagiri K, Shimane M, Nomura H, et al. Gene expression profiling of the rat endometriosis model. Am J Reprod Immunol. 2007;58: 330–343. doi: 10.1111/j.1600-0897.2007.00507.x 17845203

41. Nothnick WB, Curry TE, Vernon MW. Immunomodulation of rat endometriotic implant growth and protein production. Am J Reprod Immunol. 1994;31: 151–162. doi: 10.1111/j.1600-0897.1994.tb00860.x 8049024

42. Sharpe-Timms KL. Using rats as a research model for the study of endometriosis. Ann N Y Acad Sci. 2002/04/13. 2002;955: 312–318,396–406. Available:

43. Uchiide I, Ihara T, Sugamata M. Pathological evaluation of the rat endometriosis model. Fertil Steril. 2002/10/10. 2002;78: 782–786. Available: doi: 10.1016/s0015-0282(02)03327-7 12372457

44. Witz CA, Allsup KT, Montoya-Rodriguez IA, Vaughan SL, Centonze VE, Schenken RS. Pathogenesis of endometriosis—current research. Hum Fertil. 2003/03/29. 2003;6: 34–40. Available:

45. Rojas-Cartagena C, Appleyard CB, Santiago OI, Flores I. Experimental intestinal endometriosis is characterized by increased levels of soluble TNFRSF1B and downregulation of Tnfrsf1a and Tnfrsf1b gene expression. Biol Reprod. 2005/08/12. 2005;73: 1211–1218. doi: 10.1095/biolreprod.105.044131 16093357

46. Quinones M, Urrutia R, Torres-Reveron A, Vincent K, Flores I. Anxiety, coping skills and hypothalamus-pituitary-adrenal (HPA) axis in patients with endometriosis. J Reprod Biol Heal. 2015;3. doi: 10.7243/2054-0841-3-2 26900480

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden