Mercury and selenium concentrations in fishes of the Upper Colorado River Basin, southwestern United States: A retrospective assessment

Autoři: Natalie K. Day aff001;  Travis S. Schmidt aff002;  James J. Roberts aff002;  Barbara C. Osmundson aff003;  James J. Willacker aff004;  Collin A. Eagles-Smith aff004
Působiště autorů: U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, United States of America aff001;  U.S. Geological Survey, Colorado Water Science Center, Fort Collins, Colorado, United States of America aff002;  U.S. Fish and Wildlife Service, Grand Junction, Colorado, United States of America aff003;  U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, United States of America aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226824


Mercury (Hg) and selenium (Se) are contaminants of concern for fish in the Upper Colorado River Basin (UCRB). We explored Hg and Se in fish tissues (2,324 individuals) collected over 50 years (1962–2011) from the UCRB. Samples include native and non-native fish collected from lotic waterbodies spanning 7 major tributaries to the Colorado River. There was little variation of total mercury (THg) in fish assemblages basin-wide and only 13% (272/1959) of individual fish samples exceeded the fish health benchmark (0.27 μg THg/g ww). Most THg exceedances were observed in the White-Yampa tributary whereas the San Juan had the lowest mean THg concentration. Risks associated with THg are species specific with exceedances dominated by Colorado Pikeminnow (mean = 0.38 and standard error ± 0.08 μg THg/g ww) and Roundtail Chub (0.24 ± 0.06 μg THg/g ww). For Se, 48% (827/1720) of all individuals exceeded the fish health benchmark (5.1 μg Se/g dw). The Gunnison river had the most individual exceedances of the Se benchmark (74%) whereas the Dirty Devil had the fewest. We identified that species of management concern accumulate THg and Se to levels above risk thresholds and that fishes of the White-Yampa (THg) and Gunnison (Se) rivers are at the greatest risk in the UCRB.

Klíčová slova:

Contaminants – Freshwater fish – Metallic mercury – Rivers – Selenium – Species interactions – Toxicity – Colorado


1. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol. 2013;47(10):4967–83. doi: 10.1021/es305071v 23590191.

2. Lemly AD. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicology and Environmental Safety. 2004;59(1):44–56. doi: 10.1016/S0147-6513(03)00095-2 15261722

3. Rodriguez Martin JA, Nanos N. Soil as an archive of coal-fired power plant mercury deposition. J Hazard Mater. 2016;308:131–8. doi: 10.1016/j.jhazmat.2016.01.026 26808251.

4. Karbassi A, Nasrababi R, Rezai M, Modabberi S. Pollution with metals (As, Sb, Hg, Zn) in agricultureal soil located close to Zarshuran gold mine, Iran. Environmental Engineering and Mangement Journal. 2014;13(1):115–20.

5. Bueno PC, Bellido E, Rubí JAM, Ballesta RJ. Concentration and spatial variability of mercury and other heavy metals in surface soil samples of periurban waste mine tailing along a transect in the Almadén mining district (Spain). Environmental Geology. 2008;56(5):815–24. doi: 10.1007/s00254-007-1182-z

6. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM. Ecotoxicology of Mercury. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J Jr, editors. Handbook of Ecotoxicology. 2nd Edition ed: CRC Press; 2003. p. 409–63.

7. Eisler R. Handbook of Chemical Risk Assessment: Health hazards to humans, plants, and animals. Boca Raton, FL: Lewis Publishers; 2000.

8. Hamilton SJ. Review of selenium toxicity in the aquatic food chain. Sci Total Environ. 2004;326(1–3):1–31. doi: 10.1016/j.scitotenv.2004.01.019 15142762.

9. Eagles-Smith CA, Ackerman JT, Willacker JJ, Tate MT, Lutz MA, Fleck JA, et al. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci Total Environ. 2016;568:1171–84. doi: 10.1016/j.scitotenv.2016.03.229 27102274.

10. Carlson CA, and R. T. Muth. The Colorado River: lifeline of the American Southwest. In: Dodge PD, editor. Proceedings of the International Large River Symposium: Canadian Special Publication of Fisheries and Aquatic Sciences; 1989. p. 220–39.

11. Tyus HM, Saunders JF. Nonnative fishes in the Upper Colorado River Basin and a strategic plan for their control. Boulder, CO: University of Colorado, Limnology Cf; 1996 Contract No.: Final Report for the Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin.

12. Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, et al. Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio. 2018;47(2):170–97. doi: 10.1007/s13280-017-1011-x 29388128.

13. USFWS. Colorado Pikeminnow (Ptychocheilus lucius) recovery goals: amendment and supplement to the Colorado Squawfish recovery plan. U.S. Fish and Wildlife Service Mountain-Prairie Region (6), 2002.

14. USFWS. Colorado Pikeminnow (Ptychocheilus lucius) 5-year review: Summery and evaluation. Denver, CO: U.S. Fish and Wildlife Serice, Progam UCREFR; 2011.

15. Minckley WL, Deacon JE. Battle against extinction: Native fish management in the American West: University of Arizona Press (Tucson, AZ); 1991.

16. Olden JD, Poff NL, Bestgen KR. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecol Monogr. 2006;76(1):25–40. doi: 10.1890/05-0330

17. Osmundson DB, Ryel RJ, Tucker ME, Burdick BD, Elmblad WR, Chart TE. Dispersal patterns of subadult and adult Colorado Squawfish in the Upper Colorado River. Transactions of the American Fisheries Society. 1998;127(6):943–56. doi: 10.1577/1548-8659(1998)127<0943:Dposaa>2.0.Co;2

18. Osmundson DB, White GC. Long-term mark-recapture monitoring of a Colorado Pikeminnow Ptychocheilus lucius population: assessing recovery progress using demographic trends. Endangered Species Research. 2017;34:131–47. doi: 10.3354/esr00842

19. Morel FMM, Kraepiel AML, Amyot M. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics. 1998;29(1):543–66. doi: 10.1146/annurev.ecolsys.29.1.543

20. Ogle RS, Maier KJ, Kiffney P, Williams MJ, Brasher A, Melton LA, et al. Bioaccumulation of Selenium in Aquatic Ecosystems. Lake and Reservoir Management. 1988;4(2):165–73. doi: 10.1080/07438148809354824

21. Presser TS, Luoma SN. A methodology for ecosystem-scale modeling of selenium. Integr Environ Assess Manag. 2010;6(4):685–710. doi: 10.1002/ieam.101 20872649.

22. Beckvar N, Dillon TM, Read LB. Approaches for linking whole-body fish tissue residues of mercury or DDT to biological effects thresholds. Environ Toxicol Chem. 2005;24(8):2094–105. doi: 10.1897/04-284r.1 16152984.

23. Hamilton SJ, Holley KM, Buhl KJ, Bullard FA, Weston LK, McDonald SF. Toxicity of selenium and other elements in food organisms to Razorback Sucker larvae. Aquat Toxicol. 2002;59(3–4):253–81. doi: 10.1016/s0166-445x(01)00257-0 12127741.

24. Peterson SA, Ralston N. V., Peck D. V., Van Sickle J., Robertson J. D., Spate V. L., Morris J. S. How might selenium moderate the toxic effects of mercury in stream fish of the western U.S.? Environ Sci Technol. 2009;43(10):3919–25. doi: 10.1021/es803203g 19544908.

25. Sormo EG, Ciesielski TM, Overjordet IB, Lierhagen S, Eggen GS, Berg T, et al. Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol. 2011;45(15):6561–6. doi: 10.1021/es200478b 21675723.

26. Lepak JM, Shayler HA, Kraft CE, Knuth BA. Mercury Contamination in Sport Fish in the Northeastern United States: Considerations for Future Data Collection. Bioscience. 2009;59(2):174–81. doi: 10.1525/bio.2009.59.2.10

27. Lepak JM, Kinzli KD, Fetherman ER, Pate WM, Hansen AG, Gardunio EI, et al. Manipulation of growth to reduce mercury concentrations in sport fish on a whole-system scale. Can J Fish Aquat Sci. 2012;69(1):122–35. doi: 10.1139/F2011-136

28. CFR. Determination of critical habitat for Colorado River endangered fishes; Razorback Sucker, Colorado Pikeminnow, Humpback Chub, and Bonytail Chub. Federal Register: Department of Interior; 1994. p. 133374–13400.

29. Osmundson DB. Population status and trends of Colorado Pikeminnow of the Upper Colorado River, 1991–2005: Final report: Grand Junction, CO: U.S. Fish and Wildlife Service, Colorado River Fishery Project, [2009]; 2009.

30. Miller PS. A population viability analysis for the Colorado Pikeminnow (Ptychochellus lucius) in the San Juan River. Apple Valley, MN: Conservation Breeding Specialist Group, Team TCPP; 2014.

31. Osmundson BC, Lusk JD. Field assessment of Colorado Pikeminnow exposure to mercury within its critical habitat in Colorado, New Mexico, and Utah. Environmenal contaminants program., 2016.

32. Osmundson BC, May TW, Osmundson DB. Selenium concentrations in the Colorado Pikeminnow (Ptychocheilus lucius): relationship with flows in the Upper Colorado River. Arch Environ Contam Toxicol. 2000;38(4):479–85. doi: 10.1007/s002449910063 10787099.

33. Osmundson BC, Skorupa JP. CO-Selenium in fish tissue: Prediction equations for conversion between whole body, muscle, and eggs. U.S. Fish and Wildlife Service, 2011.

34. Waddell B, May T. Selenium concentrations in the razorback sucker (Xyrauchen texanus): Substitution of non-lethal muscle plugs for muscle tissue in contaminant assessment. Arch Environ Contam Toxicol. 1995;28(3):321–6. doi: 10.1007/bf00213109

35. Day NK, Schmidt, T.S., Roberts, J.J., Osmundson, B.C., Willacker, J.J., Eagles-smith, C.A. Fish tissue mercury and selenium concentrations in Upper Colorado River Basin: 1962–2011. U.S. Geological Survey data release. 2019.

36. Bevelhimer M, Sample B, Southworth G, Beauchamp J, Peterson M. Estimation of whole-fish contaminant concentrations from fish fillet data. Oak Ridge National Laboratory, 1997 ES/ER/TM-202.

37. Boalt E, Miller A, Dahlgren H. Distribution of cadmium, mercury, and lead in different body parts of Baltic herring (Clupea harengus) and perch (Perca fluviatilis): implications for environmental status assessments. Mar Pollut Bull. 2014;78(1–2):130–6. doi: 10.1016/j.marpolbul.2013.10.051 24262210.

38. USEPA. Aquatic life ambient water quality criterion for selenium—freshwater. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, 2016 EPA-822-R-16-006.

39. Zhang X, Gandhi N, Bhavsar SP, Ho LS. Effects of skin removal on contaminant levels in salmon and trout filets. Sci Total Environ. 2013;443(Supplement C):218–25. doi: 10.1016/j.scitotenv.2012.10.090 23186633.

40. Sandheinrich MB, Wiener JG. Methylmercury in Freshwater Fish: recent advances in assessing toxicity of environmentally relevant exposures. In: Beyer WN, Meador JP, editors. Environmental Contaminants in Biota. Second Edition ed. Boca Raton, FL USA: CRC Press; 2011. p. 169–90.

41. Hamilton SJ. Review of residue-based selenium toxicity thresholds for freshwater fish. Ecotoxicol Environ Saf. 2003;56(2):201–10. doi: 10.1016/s0147-6513(02)00091-x 12927550.

42. Eagles-Smith CA, Willacker JJ, Flanagan CM. Mercury in fishes from 21 national parks in the Western United States—Inter and intra-park variation in concentrations and ecological risk. Reston, VA: U.S. Department of Interior, Survey USG; 2014 2014–1051 Contract No.: 2014–1051.

43. Burger J, Gochfeld M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Sci Total Environ. 2011;409(8):1418–29. doi: 10.1016/j.scitotenv.2010.12.034 21292311.

44. Barton K. MuMIn: Multi-Model Inference. R package version 1.15.6. 2016 ed2016.

45. Lenth RV. Least-Squares Means: The R Package lsmeans. Journal of Statistical Software. 2016;69(1):1–33. Epub 2016-01-29. doi: 10.18637/jss.v069.i01

46. R Development Core Team. R: A language and environment for statistical computing. 3.2.2 ed. Vienna, Austria: R Foundation for Statistical Computing; 2015.

47. Ganther HE, Goudie C., Sunde M. L., Kopecky M. J., Wagner P. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science. 1972;175(4026):1122–4. doi: 10.1126/science.175.4026.1122 5062150.

48. Khan MA, Wang F. Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem. 2009;28(8):1567–77. doi: 10.1897/08-375.1 19374471.

49. Dang F, Wang WX. Antagonistic interaction of mercury and selenium in a marine fish is dependent on their chemical species. Environ Sci Technol. 2011;45(7):3116–22. doi: 10.1021/es103705a 21366307.

50. Baldwin DH, Spromberg JA, Collier TK, Scholz NL. A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations. Ecol Appl. 2009;19(8):2004–15. doi: 10.1890/08-1891.1 20014574.

51. Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, et al. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect. 2006;114(2):297–301. doi: 10.1289/ehp.7861 16451871.

52. Peterson SA, Van Sickle J, Herlihy AT, Hughes RM. Mercury concentration in fish from streams and rivers throughout the western United States. Environ Sci Technol. 2007;41(1):58–65. doi: 10.1021/es061070u 17265927.

53. Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, et al. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Sci Total Environ. 2016;568:1213–26. doi: 10.1016/j.scitotenv.2016.05.094 27320732.

54. Bestgen KR, Walford C.D., White G.C., Hawkins J.A., Jones M.T., Webber P.A., Breen M., Skorupski J.A. Jr., Howard J., Creighton K., Logan J., Battige K., Wright F.B. Population status and trends of Colorado Pikeminnow in the Green River Sub-Basin, Utah and Colorado, 2000–2013. Denver, Colorado: Colorado State University and Upper Colorado River Endangered Fish Recovery Program, 2018 Larval Fish Laboratory Contribution 2007.

55. Osmundson D, White, G. Population structure, abundance and recruitment of Colorado Pikeminnow of the Upper Colorado River, 1991–2010. Final report. Grand Junction, CO: U.S. Fish and Wildlife Service, 2014 Recovery Implementation Program Project No. 127.

56. Bestgen KR, Hawkins JA, White GC, Christopherson KD, Hudson JM, Fuller MH, et al. Population status of Colorado Pikeminnow in the Green River Basin, Utah and Colorado. Transactions of the American Fisheries Society. 2007;136(5):1356–80. doi: 10.1577/T05-303.1

57. Minckley WL. Fishes of Arizona. Phoenix, AZ: Arizona Game and Fish Deparment; 1973.

58. Lamborg CH, Fitzgerald WF, Damman AWH, Benoit JM, Balcom PH, Engstrom DR. Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochem Cy. 2002;16(4):51-1—11.

59. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, et al. Atmospherc mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol. 2002;36(11):2303–10. doi: 10.1021/es0157503 12075781.

60. Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, Ter Schure A. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci Total Environ. 2016;568:546–56. doi: 10.1016/j.scitotenv.2016.01.061 26803218.

61. Willacker JJ, Eagles-Smith CA, Lutz MA, Tate MT, Lepak JM, Ackerman JT. Reservoirs and water management influence fish mercury concentrations in the western United States and Canada. Sci Total Environ. 2016;568:739–48. doi: 10.1016/j.scitotenv.2016.03.050 27039275.

62. Olden JD, Hogan ZS, Vander Zanden MJ. Small fish, big fish, red fish, blue fish: size-biased extinction risk of the world’s freshwater and marine fishes. Global Ecol Biogeogr. 2007;16(6):694–701. doi: 10.1111/j.1466-8238.2007.00337.x

63. Walters DM, Rosi-Marshall E, Kennedy TA, Cross WF, Baxter CV. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environ Toxicol Chem. 2015;34(10):2385–94. doi: 10.1002/etc.3077 26287953.

64. Evers DC, Han YJ, Driscoll CT, Kamman NC, Goodale MW, Lambert KF, et al. Biological mercury hotspots in the northeastern United States and southeastern Canada. Bioscience. 2007;57(1):29–43. doi: 10.1641/B570107

65. Scudder BC, Chasar LC, Wentz DA, Bauch NJ, Brigham ME, Moran PW, et al. Mercury in fish, bed sediment, and water from streams across the United States, 1998–2005. Reston, VA: U.S. Geological Survey, 2009 Contract No.: 2009–5109.

66. Alpers CN, Yee JL, Ackerman JT, Orlando JL, Slotton DG, Marvin-DiPasquale MC. Prediction of fish and sediment mercury in streams using landscape variables and historical mining. Sci Total Environ. 2016;571(Supplement C):364–79. doi: 10.1016/j.scitotenv.2016.05.088 27378154.

67. Hamilton SJ. Selenium effects on endangered fish in the Colorado River Basin. In: FJ W.T., Engberg RA, editors. Environmental chemistry of selenium. New York, NY: Marcel Dekker; 1998. p. 297–313.

68. Hamilton SJ. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin. Hum Ecol Risk Assess. 1999;5(6):1153–80. doi: 10.1080/10807039.1999.10518884

69. Elrashidi MA. Selenium distribution for soils derived from Mancos Shale in Gunnison and Uncompahgre River Basins, West-Central Colorado. Communications in Soil Science and Plant Analysis. 2018;49(9):1083–91. doi: 10.1080/00103624.2018.1448858

70. Seiler R, Skorupa JP, Naftz DL, Nolan T. Irrigation-induced contamination of water, sediment, and biota in the western united states-synthesis of data from the national irrigation water quality program. Professional Paper. U.S. Geological Survey, Interior USDo; 2003 1655.

71. Hamilton SJ, Holley KM, Buhl KJ, Bullard FA, Ken Weston L, McDonald SF. Selenium impacts on Razorback Sucker, Colorado River, Colorado I. Adults. Ecotoxicol Environ Saf. 2005;61(1):7–31. doi: 10.1016/j.ecoenv.2004.07.002 15814307.

72. Hamilton SJ, Waddell B. Selenium in eggs and milt of razorback Sucker (Xyrauchen texanus) in the middle Green River, Utah. Arch Environ Contam Toxicol. 1994;27(2):195–201. doi: 10.1007/bf00214263 8060163.

73. Hamilton SJ, Muth RT, Waddell B, May TW. Selenium and other trace elements in wild larval Razorback Suckers from the Green River, Utah. Denver, CO: Department of the Interior, National Irrigation Water Quality Program, 1998.

74. Vanicek CD, Kramer RH. Life History of the Colorado Squawfish, Ptychocheilus lucius, and the Colorado Chub, Gila robusta, in the Green River in Dinosaur National Monument, 1964–1966. Transactions of the American Fisheries Society. 1969;98(2):193–208. doi: 10.1577/1548-8659(1969)98[193:lhotcs];2

75. Golden ME, Holden, P.B., Albrecht, B. Retention, growth, habitat use, of Colorado Pikeminnow stocked as age-0 fish in the San Juan River 2002–2005: Final summary report. San Juan Basin Recovery Implementation Program Biology Committee: 2006 Contract No.: PR 949–2.

76. Osmundson BC, Lusk JD. Field assessment of Colorado Pikeminnow exposure to mercury within its designated critical habitat in Colorado, Utah, and New Mexico. Arch Environ Contam Toxicol. 2019;76(1):17–30. doi: 10.1007/s00244-018-0566-2 30259077.

77. Seixas TG, Moreira I, Malm O, Kehrig HA. Mercury and selenium in a top-predator fish, Trichiurus lepturus (Linnaeus, 1758), from the tropical Brazilian Coast, Rio de Janeiro. Bull Environ Contam Toxicol. 2012;89(2):434–8. doi: 10.1007/s00128-012-0680-1 22617947.

78. Lemly AD. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ Monit Assess. 1993;28(1):83–100. doi: 10.1007/BF00547213 24221061.

79. Lemly AD. Selenium in aquatic organisms. In: Beyer WN, Heinz GH, Redmon-Norwood AW, editors. Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. Boca Raton, FL.1996.

80. Buhl KJ, Hamilton SJ. The chronic toxicity of dietary and waterborne selenium to adult Colorado Pikeminnow (Ptychocheilus Lucius) in a water qualtiy simulating that in the San Juan river. Yankton, South Dakota: U.S. Geological Survey, 2000.

81. Hamilton SJ, Buhl KJ. Selenium in water, sediment, plants, invertebrates, and fish in the blackfoot river drainage. Water Air Soil Poll. 2004;159(1–4):2–34. doi: 10.1023/b:wate.0000049143.55199.76

82. Muscatello JR, Belknap AM, Janz DM. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environ Pollut. 2008;156(2):387–93. doi: 10.1016/j.envpol.2008.01.039 18346828.

83. Saiki MK, Jennings MR, Brumbaugh WG. Boron, molybdenum, and selenium in aquatic food chains from the lower San Joaquin River and its tributaries, California. Arch Environ Contam Toxicol. 1993;24(3):307–19. doi: 10.1007/bf01128729 8470934.

84. Van Dyke JU, Hopkins WA, Jackson BP. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site. Environ Pollut. 2013;182:45–52. doi: 10.1016/j.envpol.2013.06.025 23896677.

85. Lemly AD. Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol. 2002;57(1–2):39–49. 11879937.

86. Buhl KJ, Hamilton SJ. Toxicity of inorganic contaminants, individually and in environmental mixtures, to three endangered fishes (Colorado Squawfish, Bonytail, and Razorback Sucker). Arch Environ Contam Toxicol. 1996;30(1):84–92. doi: 10.1007/bf00211332

87. Yackulic CB, Yard MD, Korman J, Haverbeke DR. A quantitative life history of endangered humpback chub that spawn in the Little Colorado River: variation in movement, growth, and survival. Ecol Evol. 2014;4(7):1006–18. doi: 10.1002/ece3.990 24772278.

88. Hamilton SJ, Holley KM, Buhl KJ, Bullard FA, Weston LK, McDonald SF. Evaluation of flushing of a high-selenium backwater channel in the Colorado River. Environ Toxicol. 2004;19(1):51–81. doi: 10.1002/tox.10151 14758594.

89. Das K, Dupont A, De Pauw-Gillet MC, Debier C, Siebert U. Absence of selenium protection against methylmercury toxicity in harbour seal leucocytes in vitro. Mar Pollut Bull. 2016;108(1–2):70–6. doi: 10.1016/j.marpolbul.2016.04.060 27197766.

90. Frouin H, Loseto LL, Stern GA, Haulena M, Ross PS. Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection. Aquat Toxicol. 2012;109:185–93. doi: 10.1016/j.aquatox.2011.09.021 22018916.

91. Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Kondrad SL, Erwin CA. Hormesis associated with a low dose of methylmercury injected into mallard eggs. Arch Environ Contam Toxicol. 2012;62(1):141–4. doi: 10.1007/s00244-011-9680-0 21604054.

92. Penglase S, Hamre K, Ellingsen S. Selenium and mercury have a synergistic negative effect on fish reproduction. Aquat Toxicol. 2014;149:16–24. doi: 10.1016/j.aquatox.2014.01.020 24555955.

93. Mulder PJ, Lie E, Eggen GS, Ciesielski TM, Berg T, Skaare JU, et al. Mercury in molar excess of selenium interferes with thyroid hormone function in free-ranging freshwater fish. Environ Sci Technol. 2012;46(16):9027–37. doi: 10.1021/es301216b 22794667.

94. Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium. Sci Total Environ. 2012;431:46–56. doi: 10.1016/j.scitotenv.2012.05.024 22664537.

95. Reash RJ, Brown L, Merritt K. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks. Integr Environ Assess Manag. 2015;11(3):474–80. doi: 10.1002/ieam.1618 25586716.

Článek vyšel v časopise


2020 Číslo 1