The wavelet power spectrum of perfusion weighted MRI correlates with tumor vascularity in biopsy-proven glioblastoma samples


Autoři: Lukas T. Rotkopf aff001;  Benedikt Wiestler aff001;  Christine Preibisch aff001;  Friederike Liesche-Starnecker aff002;  Thomas Pyka aff001;  Dominik Nörenberg aff003;  Stefanie Bette aff004;  Jens Gempt aff005;  Kolja M. Thierfelder aff006;  Claus Zimmer aff001;  Thomas Huber aff003
Působiště autorů: Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany aff001;  Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany aff002;  Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany aff003;  Department of Diagnostic and Interventional Radiology and Neuroradiology, Universitaetsklinikum Augsburg, Augsburg, Germany aff004;  Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany aff005;  Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228030

Souhrn

Background

Wavelet transformed reconstructions of dynamic susceptibility contrast (DSC) MR perfusion (wavelet-MRP) are a new and elegant way of visualizing vascularization. Wavelet-MRP maps yield a clear depiction of hypervascular tumor regions, as recently shown.

Objective

The aim of this study was to elucidate a possible connection of the wavelet-MRP power spectrum in glioblastoma (GBM) with local vascularity and cell proliferation.

Methods

For this IRB-approved study 12 patients (63.0+/-14.9y; 7m) with histologically confirmed IDH-wildtype GBM were included. Target regions for biopsies were prospectively marked on tumor regions as seen on preoperative 3T MRI. During subsequent neurosurgical tumor resection 43 targeted biopsies were taken from these target regions, of which all 27 matching samples were analyzed. All specimens were immunohistochemically analyzed for endothelial cell marker CD31 and proliferation marker Ki67 and correlated to the wavelet-MRP power spectrum as derived from DSC perfusion weighted imaging.

Results

There was a strong correlation between wavelet-MRP power spectrum (median = 4.41) and conventional relative cerebral blood volume (median = 5.97 ml/100g) in Spearman's rank-order correlation (κ = .83, p < .05). In a logistic regression model, the wavelet-MRP power spectrum showed a significant correlation to CD31 dichotomized to no or present staining (p = .04), while rCBV did not show a significant correlation to CD31 (p = .30). No significant association between Ki67 and rCBV or wavelet-MRP was found (p = .62 and p = .70, respectively).

Conclusion

The wavelet-MRP power spectrum derived from existing DSC-MRI data might be a promising new surrogate for tumor vascularity in GBM.

Klíčová slova:

Biopsy – Blood volume – Central nervous system – Glioblastoma multiforme – Histology – Magnetic resonance imaging – Tumor resection – Perfusion


Zdroje

1. Leu K, Enzmann DR, Woodworth DC, Harris RJ, Tran AN, Lai A, et al. Hypervascular tumor volume estimated by comparison to a large-scale cerebral blood volume radiographic atlas predicts survival in recurrent glioblastoma treated with bevacizumab. Cancer Imaging. 2014;14: 31. doi: 10.1186/s40644-014-0031-z 25608485

2. Jain R, Griffith B, Alotaibi F, Zagzag D, Fine H, Golfinos J, et al. Glioma angiogenesis and perfusion imaging: Understanding the relationship between tumor blood volume and leakiness with increasing glioma grade. Am J Neuroradiol. 2015;36: 2030–2035. doi: 10.3174/ajnr.A4405 26206809

3. Singh R, Kesavabhotla K, Kishore SA, Zhou Z, Tsiouris AJ, Filippi CG, et al. Dynamic susceptibility contrast-enhanced mr perfusion imaging in assessing recurrent glioblastoma response to superselective intra-arterial bevacizumab therapy. Am J Neuroradiol. 2016;37: 1838–1843. doi: 10.3174/ajnr.A4823 27231225

4. Bennett IE, Field KM, Hovens CM, Moffat BA, Rosenthal MA, Drummond K, et al. Early perfusion MRI predicts survival outcome in patients with recurrent glioblastoma treated with bevacizumab and carboplatin. J Neurooncol. 2017;131: 321–329. doi: 10.1007/s11060-016-2300-0 27896520

5. Havla L, Thierfelder KM, Beyer SE, Sommer WH, Dietrich O. Wavelet-based calculation of cerebral angiographic data from time-resolved CT perfusion acquisitions. Eur Radiol. 2015;25: 2354–2361. doi: 10.1007/s00330-015-3651-1 25716940

6. Kunz WG, Sommer WH, Havla L, Dorn F, Meinel FG, Dietrich O, et al. Detection of single-phase CTA occult vessel occlusions in acute ischemic stroke using CT perfusion-based wavelet-transformed angiography. Eur Radiol. 2017;27: 2657–2664. doi: 10.1007/s00330-016-4613-y 27722798

7. Huber T, Rotkopf L, Wiestler B, Kunz WG, Bette S, Gempt J, et al. Wavelet-based reconstruction of dynamic susceptibility MR-perfusion: a new method to visualize hypervascular brain tumors. Eur Radiol. 2019;29: 2669–2676. doi: 10.1007/s00330-018-5892-2 30552476

8. Preibisch C, Shi K, Kluge A, Lukas M, Wiestler B, Göttler J, et al. Characterizing hypoxia in human glioma: A simultaneous multimodal MRI and PET study. NMR Biomed. 2017;30: e3775. doi: 10.1002/nbm.3775 28805936

9. Kluge A, Lukas M, Toth V, Pyka T, Zimmer C, Preibisch C. Analysis of three leakage-correction methods for DSC-based measurement of relative cerebral blood volume with respect to heterogeneity in human gliomas. Magn Reson Imaging. 2016;34: 410–421. doi: 10.1016/j.mri.2015.12.015 26708034

10. Hedderich D, Kluge A, Pyka T, Zimmer C, Kirschke JS, Wiestler B, et al. Consistency of normalized cerebral blood volume values in glioblastoma using different leakage correction algorithms on dynamic susceptibility contrast magnetic resonance imaging data without and with preload. J Neuroradiol. 2019;46: 44–51. doi: 10.1016/j.neurad.2018.04.006 29753641

11. Coşkun E, Özder S, Tiryaki E. The Paul wavelet algorithm: An alternative approach to calculate the refractive index dispersion of a dielectric film from transmittance spectrum. Appl Phys B Lasers Opt. 2013;113: 243–250. doi: 10.1007/s00340-013-5465-7

12. Torrence C, Compo GP. A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc. 1998;79: 61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

13. Woodworth G, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD. Accuracy of frameless and frame-based image-guided stereotactic brain biopsy in the diagnosis of glioma: Comparison of biopsy and open resection specimen. Neurol Res. 2005;27: 358–362. doi: 10.1179/016164105X40057 15949232

14. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114: 97–109. doi: 10.1007/s00401-007-0243-4 17618441

15. Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol. 2018;136: 805–810. doi: 10.1007/s00401-018-1913-0 30259105

16. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131: 803–820. doi: 10.1007/s00401-016-1545-1 27157931

17. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: Direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusio. Am J Neuroradiol. 2009;30: 552–558. doi: 10.3174/ajnr.A1377 19056837

18. Havla L, Schneider MJ, Thierfelder KM, Beyer SE, Ertl-Wagner B, Reiser MF, et al. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data. Med Phys. 2016;43: 702–709. doi: 10.1118/1.4939224 26843234

19. Wintermark M, Smith WS, Ko NU, Quist M, Schnyder P, Dillon WP. Dynamic perfusion CT: Optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. Am J Neuroradiol. 2004;25: 720–729. 15140710

20. Abels B, Klotz E, Tomandl BF, Villablanca JP, Kloska SP, Lell MM. CT perfusion in acute ischemic stroke: A comparison of 2-second and 1-second temporal resolution. Am J Neuroradiol. 2011;32: 1632–1639. doi: 10.3174/ajnr.A2576 21816919

21. Ameratunga M, Pavlakis N, Wheeler H, Grant R, Simes J, Khasraw M. Anti-angiogenic therapy for high-grade glioma. Cochrane Database of Systematic Reviews. 2018. doi: 10.1002/14651858.CD008218.pub4 30480778

22. Ken S, Deviers A, Filleron T, Catalaa I, Lotterie JA, Khalifa J, et al. Voxel-based evidence of perfusion normalization in glioblastoma patients included in a phase I–II trial of radiotherapy/tipifarnib combination. J Neurooncol. 2015;124: 465–473. doi: 10.1007/s11060-015-1860-8 26189058

23. Hu LS, Eschbacher JM, Dueck AC, Heiserman JE, Liu S, Karis JP, et al. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. Am J Neuroradiol. 2012;33: 69–76. doi: 10.3174/ajnr.A2743 22095961

24. Pathak AP, Schmainda KM, Douglas Ward B, Linderman JR, Rebro KJ, Greene AS. MR-derived cerebral blood volume maps: Issues regarding histological validation and assessment of tumor angiogenesis. Magn Reson Med. 2001;46: 735–747. doi: 10.1002/mrm.1252 11590650

25. Melguizo-Gavilanes I, Bruner JM, Guha-Thakurta N, Hess KR, Puduvalli VK. Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? J Neurooncol. 2015;123: 141–150. doi: 10.1007/s11060-015-1774-5 25894594

26. Zeng QS, Li CF, Liu H, Zhen JH, Feng DC. Distinction Between Recurrent Glioma and Radiation Injury Using Magnetic Resonance Spectroscopy in Combination With Diffusion-Weighted Imaging. Int J Radiat Oncol Biol Phys. 2007;68: 151–158. doi: 10.1016/j.ijrobp.2006.12.001 17289287

27. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol. 2007;84: 63–69. doi: 10.1007/s11060-007-9341-3 17619225

28. Bette S, Huber T, Gempt J, Boeckh-Behrens T, Wiestler B, Kehl V, et al. Local fractional anisotropy is reduced in areas with tumor recurrence in glioblastoma. Radiology. 2017;283: 499–507. doi: 10.1148/radiol.2016152832 28234549

29. Hojjati M, Badve C, Garg V, Tatsuoka C, Rogers L, Sloan A, et al. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas. J Neuroimaging. 2018;28: 118–125. doi: 10.1111/jon.12460 28718993

30. Chuang MT, Liu YS, Tsai YS, Chen YC, Wang CK. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: A meta-analysis. Hendrikse J, editor. PLoS One. 2016;11: e0141438. doi: 10.1371/journal.pone.0141438 26741961

31. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging. 2013;37: 41–49. doi: 10.1016/j.clinimag.2012.02.016 23151413

32. Juan-Albarracín J, Fuster-Garcia E, Pérez-Girbés A, Aparici-Robles F, Alberich-Bayarri Á, Revert-Ventura A, et al. Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. Radiology. 2018;287: 944–954. doi: 10.1148/radiol.2017170845 29357274

33. Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. Am J Neuroradiol. 2015;36: E41–E51. doi: 10.3174/ajnr.A4341 25907520


Článek vyšel v časopise

PLOS One


2020 Číslo 1