Quantitative analysis of adsorption and desorption of volatile organic compounds on reusable zeolite filters using gas chromatography


Autoři: Jeongjun Lee aff001;  Jihyun Jeon aff001;  Jaehyuk Im aff001;  Junhwan Jang aff001;  Jaegun Lee aff001;  Hee-Jung Choi aff002;  Beom-Rae Noh aff002;  Kyoung-Kook Kim aff002;  Soohaeng Cho aff001
Působiště autorů: Department of Physics, Yonsei University, Wonju, South Korea aff001;  Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung, South Korea aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227430

Souhrn

In this study, we propose a method to quantitatively analyze the concentration of VOCs adsorbed on zeolite filters via gas chromatography (GC). The sampled VOCs from the filters with ethanol as a solution were characterized using GC to determine the concentration of the adsorbed VOCs by comparing the areas of GC peaks of the detected VOCs and ethanol. The proposed method also enabled determination of the desorption (regeneration) conditions of the zeolite filters according to heating temperature and time for various VOCs. Repeated adsorption and desorption of VOCs on zeolite filters and GC analyses allow us to evaluate the durability and reusability of the filter and could help predict the lifetime of zeolite filters in practice.

Klíčová slova:

Adsorption – Desorption – Ethanol – Scanning electron microscopy – Zeolites – Volatile organic compounds – Toluene – Gas chromatography


Zdroje

1. Kimura M, Sakai R, Sato S, Fukawa T, Ikehara T, Maeda R, et al. Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers. Adv Funct Mater. 2012; 22(3):469–76.

2. Caldararu F, Vatra C, Caldararu M. Monitoring of volatile organic compounds using a single tin dioxide sensor. J Environ Monitor. 2012; 14(10):2616–23.

3. Paknahad M, Bachhal JS, Hoorfar M. Diffusion-based humidity control membrane for microfluidic-based gas detectors. Anal Chim Acta. 2018; 1021:103–12. doi: 10.1016/j.aca.2018.03.021 29681276

4. Kohno H, Berezin AA, Chang JS, Tamura M, Yamamoto T, Shibuya A, et al. Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor. Ieee T Ind Appl. 1998; 34(5):953–66.

5. Vercammen KLL, Berezin AA, Lox F, Chang JS. Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: A Critical Review. Journal of Advanced Oxidation Technologies. 1997; 2(2).

6. Guo H, Lee SC, Chan LY, Li WM. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res. 2004; 94(1):57–66. doi: 10.1016/s0013-9351(03)00035-5 14643287

7. Urashima K, Chang JS. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. Ieee T Dielect El In. 2000; 7(5):602–14.

8. Tripathi KM, Sachan A, Castro M, Choudhary V, Sonkar SK, Feller JF. Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustain Mater Techno. 2018; 16:1–11.

9. Tung TT, Tripathi KM, Kim T, Krebsz M, Pasinszki T, Losic D. Carbon Nanomaterial Sensors for Cancer and Disease Diagnosis. 1st ed. Wiley; 2018.

10. Quan Y, Wu H, Guo C, Han Y, Yin C. Enhancement of TCE removal by a static magnetic field in a fungal biotrickling filter. Bioresour Technol. 2018; 259:365–72. doi: 10.1016/j.biortech.2018.03.031 29574317

11. Zhao XS, Ma Q, Lu GQM. VOC removal: Comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energ Fuel. 1998; 12(6):1051–4.

12. Moghaddam S, Zerafat MM, Sabbaghi S. Response surface methodology for optimization of Phenol photocatalytic degradation using Carbon-doped TiO2 nano-photocatalyst. Int J Nano Dimens. 2018; 9(1):89–103.

13. Mustafa MF, Fu X, Liu Y, Abbas Y, Wang H, Lu W. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor. J Hazard Mater. 2018; 347:317–24. doi: 10.1016/j.jhazmat.2018.01.021 29331811

14. Yi HH, Yang X, Tang XL, Zhao SZ, Huang YH, Cui XX, et al. Removal of Toluene from Industrial Gas by Adsorption-Plasma Catalytic Process: Comparison of Closed Discharge and Ventilated Discharge. Plasma Chem Plasma P. 2018; 38(2):331–45.

15. Zhao XS, Ma Q, Lu GQM. VOC removal: Comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energ Fuel. 1998; 12(6):1051–4.

16. Kim KJ, Ahn HG. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Micropor Mesopor Mat. 2012; 152:78–83.

17. Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J Catal. 2011; 279(2):257–68.

18. Duan F, Chyang CS, Zhang LH, Yin SF. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor. Bioresour Technol. 2015; 183:195–202. doi: 10.1016/j.biortech.2015.02.044 25742751

19. Mirji SA, Halligudi SB, Sawant DP, Patil KR, Gaikwad AB, Pradhan SD. Adsorption of toluene on Si(100)/SiO2 substrate and mesoporous SBA-15. Colloid Surface A. 2006; 272(3):220–6.

20. Lim JS, Yim G. Characteristic and Applications Technology of Zeolites. 1st ed. Seoul: Naeha; 2006.


Článek vyšel v časopise

PLOS One


2020 Číslo 1