Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines

Autoři: Chafen Lu aff001;  Gaojie Song aff001;  Kristin Beale aff001;  Jiabin Yan aff001;  Emma Garst aff001;  Juan Feng aff001;  Emily Lund aff002;  Flaminia Catteruccia aff002;  Timothy A. Springer aff001
Působiště autorů: Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America aff001;  Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The circumsporozoite protein (CSP) and thrombospondin-related adhesion protein (TRAP) are major targets for pre-erythrocytic malaria vaccine development. However, the CSP-based vaccine RTS,S provides only marginal protection, highlighting the need for innovative vaccine design and development. Here we design and characterize expression and folding of P. berghei (Pb) and P. falciparum (Pf) TRAP-CSP fusion proteins, and evaluate immunogenicity and sterilizing immunity in mice. TRAP N-terminal domains were fused to the CSP C-terminal αTSR domain with or without the CSP repeat region, expressed in mammalian cells, and evaluated with or without N-glycan shaving. Pb and Pf fusions were each expressed substantially better than the TRAP or CSP components alone; furthermore, the fusions but not the CSP component could be purified to homogeneity and were well folded and monomeric. As yields of TRAP and CSP fragments were insufficient, we immunized BALB/c mice with Pb TRAP-CSP fusions in AddaVax adjuvant and tested the effects of absence or presence of the CSP repeats and absence or presence of high mannose N-glycans on total antibody titer and protection from infection by mosquito bite both 2.5 months and 6 months after the last immunization. Fusions containing the repeats were completely protective against challenge and re-challenge, while those lacking repeats were significantly less effective. These results correlated with higher total antibody titers when repeats were present. Our results show that TRAP-CSP fusions increase protein antigen production, have the potential to yield effective vaccines, and also guide design of effective proteins that can be encoded by nucleic acid-based and virally vectored vaccines.

Klíčová slova:

Antibodies – Cell fusion – Enzyme-linked immunoassays – Immunoprecipitation – Malaria – Plasmodium – Sporozoites – Vaccines


1. Rts SCTP. Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med. 2014 Jul;11(7):e1001685. doi: 10.1371/journal.pmed.1001685 25072396

2. Rts SCTP. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015 Jul 4;386(9988):31–45. doi: 10.1016/S0140-6736(15)60721-8 25913272

3. Richie TL, Billingsley PF, Sim BK, James ER, Chakravarty S, Epstein JE, et al. Progress with Plasmodium falciparum sporozoite (PfSPZ)-based malaria vaccines. Vaccine. 2015 Dec 22;33(52):7452–61. doi: 10.1016/j.vaccine.2015.09.096 26469720

4. Hickey BW, Lumsden JM, Reyes S, Sedegah M, Hollingdale MR, Freilich DA, et al. Mosquito bite immunization with radiation-attenuated Plasmodium falciparum sporozoites: safety, tolerability, protective efficacy and humoral immunogenicity. Malar J. 2016 Jul 22;15(1):377. doi: 10.1186/s12936-016-1435-y 27448805

5. Epstein JE, Paolino KM, Richie TL, Sedegah M, Singer A, Ruben AJ, et al. Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. JCI Insight. 2017 Jan 12;2(1):e89154. doi: 10.1172/jci.insight.89154 28097230

6. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017 Feb 23;542(7642):445–9. doi: 10.1038/nature21060 28199305

7. Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2711–6. doi: 10.1073/pnas.1615324114 28223498

8. Sissoko MS, Healy SA, Katile A, Omaswa F, Zaidi I, Gabriel EE, et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis. 2017 May;17(5):498–509. doi: 10.1016/S1473-3099(17)30104-4 28216244

9. Sultan AA, Thathy V, Frevert U, Robson KJH, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell. 1997;90(3):511–22. doi: 10.1016/s0092-8674(00)80511-5 9267031

10. Nussenzweig V, Nussenzweig RS. Circumsporozoite proteins of malaria parasites. Cell. 1985;42(2):401–3. doi: 10.1016/0092-8674(85)90093-5 2411417

11. Coppi A, Pinzon-Ortiz C, Hutter C, Sinnis P. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J Exp Med. 2005 Jan 3;201(1):27–33. doi: 10.1084/jem.20040989 15630135

12. Coppi A, Natarajan R, Pradel G, Bennett BL, James ER, Roggero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011 Feb 14;208(2):341–56. doi: 10.1084/jem.20101488 21262960

13. Doud MB, Koksal AC, Mi LZ, Song G, Lu C, Springer TA. An unexpected fold in the circumsporozoite protein target of malaria vaccines. Proc Natl Acad Sci U S A. 2012;109(20):7817–22. doi: 10.1073/pnas.1205737109 22547819

14. Gordon DM, McGovern TW, Krzych U, Cohen JC, Schneider I, LaChance R, et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis. 1995 Jun;171(6):1576–85. doi: 10.1093/infdis/171.6.1576 7769295

15. Matuschewski K, Nunes AC, Nussenzweig V, Menard R. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J. 2002 Apr 2;21(7):1597–606. doi: 10.1093/emboj/21.7.1597 11927544

16. Song G, Koksal AC, Lu C, Springer TA. Shape change in the receptor for gliding motility in plasmodium sporozoites. Proc Natl Acad Sci U S A. 2012 December 26;109(52):21420–5. doi: 10.1073/pnas.1218581109 23236185

17. Gilbert SC, Plebanski M, Harris SJ, Allsopp CE, Thomas R, Layton GT, et al. A protein particle vaccine containing multiple malaria epitopes. Nat Biotechnol. 1997 Nov;15(12):1280–4. doi: 10.1038/nbt1197-1280 9359112

18. McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, Butcher G, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003 Jun;9(6):729–35. doi: 10.1038/nm881 12766765

19. Ewer KJ, O’Hara GA, Duncan CJ, Collins KA, Sheehy SH, Reyes-Sandoval A, et al. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation. Nat Commun. 2013;4:2836. doi: 10.1038/ncomms3836 24284865

20. Ogwang C, Kimani D, Edwards NJ, Roberts R, Mwacharo J, Bowyer G, et al. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults. Sci Transl Med. 2015 May 6;7(286):286re5. doi: 10.1126/scitranslmed.aaa2373 25947165

21. Mensah VA, Gueye A, Ndiaye M, Edwards NJ, Wright D, Anagnostou NA, et al. Safety, Immunogenicity and Efficacy of Prime-Boost Vaccination with ChAd63 and MVA Encoding ME-TRAP against Plasmodium falciparum Infection in Adults in Senegal. PLoS One. 2016;11(12):e0167951. doi: 10.1371/journal.pone.0167951 27978537

22. Tiono AB, Nebie I, Anagnostou N, Coulibaly AS, Bowyer G, Lam E, et al. First field efficacy trial of the ChAd63 MVA ME-TRAP vectored malaria vaccine candidate in 5–17 months old infants and children. PLoS One. 2018;13(12):e0208328. doi: 10.1371/journal.pone.0208328 30540808

23. Kester KE, Gray Heppner D Jr., Moris P, Ofori-Anyinam O, Krzych U, Tornieporth N, et al. Sequential Phase 1 and Phase 2 randomized, controlled trials of the safety, immunogenicity and efficacy of combined pre-erythrocytic vaccine antigens RTS,S and TRAP formulated with AS02 Adjuvant System in healthy, malaria naive adults. Vaccine. 2014 Nov 20;32(49):6683–91. doi: 10.1016/j.vaccine.2014.06.033 24950358

24. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep. 2017 Apr 19;7:46621. doi: 10.1038/srep46621 28422178

25. Bauza K, Atcheson E, Malinauskas T, Blagborough AM, Reyes-Sandoval A. Tailoring a Combination Preerythrocytic Malaria Vaccine. Infect Immun. 2015 Dec 14;84(3):622–34. doi: 10.1128/IAI.01063-15 26667840

26. Rampling T, Ewer KJ, Bowyer G, Edwards NJ, Wright D, Sridhar S, et al. Safety and efficacy of novel malaria vaccine regimens of RTS,S/AS01B alone, or with concomitant ChAd63-MVA-vectored vaccines expressing ME-TRAP. NPJ Vaccines. 2018;3:49. doi: 10.1038/s41541-018-0084-2 30323956

27. Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13419–24. doi: 10.1073/pnas.212519299 12370423

28. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004 Nov;22:1393–8. doi: 10.1038/nbt1026 15529164

29. Zhou YF, Springer TA. Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood. 2014 Mar 20;123(12):1785–93. doi: 10.1182/blood-2013-11-523639 24394662

30. Franke-Fayard B, Trueman H, Ramesar J, Mendoza J, van der Keur M, van der Linden R, et al. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol. 2004 Sep;137(1):23–33. doi: 10.1016/j.molbiopara.2004.04.007 15279948

31. Wengelnik K, Spaccapelo R, Naitza S, Robson KJ, Janse CJ, Bistoni F, et al. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J. 1999 Oct 1;18(19):5195–204. doi: 10.1093/emboj/18.19.5195 10508153

32. Bauza K, Malinauskas T, Pfander C, Anar B, Jones EY, Billker O, et al. Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites. Infect Immun. 2014 Mar;82(3):1277–86. doi: 10.1128/IAI.01187-13 24379295

33. Hafalla JC, Bauza K, Friesen J, Gonzalez-Aseguinolaza G, Hill AV, Matuschewski K. Identification of targets of CD8(+) T cell responses to malaria liver stages by genome-wide epitope profiling. PLoS Pathog. 2013 May;9(5):e1003303. doi: 10.1371/journal.ppat.1003303 23675294

34. Doll KL, Pewe LL, Kurup SP, Harty JT. Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses. J Immunol. 2016 May 15;196(10):4253–62. doi: 10.4049/jimmunol.1600155 27084099

35. Dups JN, Pepper M, Cockburn IA. Antibody and B cell responses to Plasmodium sporozoites. Front Microbiol. 2014;5:625. doi: 10.3389/fmicb.2014.00625 25477870

36. Reece WH, Pinder M, Gothard PK, Milligan P, Bojang K, Doherty T, et al. A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med. 2004 Apr;10(4):406–10. doi: 10.1038/nm1009 15034567

37. Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F, et al. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature. 2006;444(7121):937–40. doi: 10.1038/nature05361 17151604

38. Espinosa DA, Gutierrez GM, Rojas-Lopez M, Noe AR, Shi L, Tse SW, et al. Proteolytic Cleavage of the Plasmodium falciparum Circumsporozoite Protein Is a Target of Protective Antibodies. J Infect Dis. 2015 Oct 1;212(7):1111–9. doi: 10.1093/infdis/jiv154 25762791

39. Tan J, Sack BK, Oyen D, Zenklusen I, Piccoli L, Barbieri S, et al. A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein. Nat Med. 2018 May;24(4):401–7. doi: 10.1038/nm.4513 29554084

40. Kisalu NK, Idris AH, Weidle C, Flores-Garcia Y, Flynn BJ, Sack BK, et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat Med. 2018 May;24(4):408–16. doi: 10.1038/nm.4512 29554083

41. Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, et al. Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathogens. 2016 Apr 29;12(4):e1005606. doi: 10.1371/journal.ppat.1005606 27128092

42. Swearingen KE, Eng JK, Shteynberg D, Vigdorovich V, Springer TA, Mendoza L, et al. A Tandem Mass Spectrometry Sequence Database Search Method for Identification of O-Fucosylated Proteins by Mass Spectrometry. J Proteome Res. 2019 Feb 1;18(2):652–63. doi: 10.1021/acs.jproteome.8b00638 30523691

43. Song G, Springer TA. Structures of the Toxoplasma gliding motility adhesin. Proc Natl Acad Sci U S A. 2014 Mar 17;111:4862–7. doi: 10.1073/pnas.1403059111 24639528

44. Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, et al. Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryot Cell. 2010 Feb;9(2):228–41. doi: 10.1128/EC.00197-09 19783771

45. Plassmeyer ML, Reiter K, Shimp RL, Jr., Kotova S, Smith PD, Hurt DE, et al. Structure of the Plasmodium falciparum circumsporozoite protein, a leading malaria vaccine candidate. J Biol Chem. 2009 Sep 25;284(39):26951–63. doi: 10.1074/jbc.M109.013706 19633296

46. Rutgers T, Gordon D, Gathoye AM, Hollingdale M, Hockmeyer W, Rosenberg M, et al. Hepatitis B Surface Antigen as Carrier Matrix for the Repetitive Epitope of the Circumsporozoite Protein of Plasmodium Falciparum. Bio/Technology. 1988 09/01/online;6:1065.

47. Datta D, Bansal GP, Kumar R, Ellefsen B, Hannaman D, Kumar N. Evaluation of the Impact of Codon Optimization and N-Linked Glycosylation on Functional Immunogenicity of Pfs25 DNA Vaccines Delivered by In Vivo Electroporation in Preclinical Studies in Mice. Clin Vaccine Immunol. 2015 Sep;22(9):1013–9. doi: 10.1128/CVI.00185-15 26135972

48. Stowers AW, Chen Lh LH, Zhang Y, Kennedy MC, Zou L, Lambert L, et al. A recombinant vaccine expressed in the milk of transgenic mice protects Aotus monkeys from a lethal challenge with Plasmodium falciparum. Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):339–44. doi: 10.1073/pnas.012590199 11752405

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden