Cryo-focused ion beam preparation of perovskite based solar cells for atom probe tomography


Autoři: Nicolás Alfonso Rivas aff001;  Aslihan Babayigit aff001;  Bert Conings aff001;  Torsten Schwarz aff003;  Andreas Sturm aff003;  Alba Garzón Manjón aff003;  Oana Cojocaru-Mirédin aff004;  Baptiste Gault aff003;  Frank Uwe Renner aff001
Působiště autorů: Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Limburg, Belgium aff001;  IMEC vzw. Division IMOMEC, Diepenbeek, Limburg, Belgium aff002;  Department of Microstructure physics and alloy design, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, North Rhein-Westfalia, Germany aff003;  Institut of Physics, RWTH Aachen University, Aachen, North Rhein-Westfalia, Germany aff004;  Department of Materials, Royal School of Mines, Imperial College, London, United Kingdom aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227920

Souhrn

Focused-ion beam lift-out and annular milling is the most common method used for obtaining site specific specimens for atom probe tomography (APT) experiments and transmission electron microscopy. However, one of the main limitations of this technique comes from the structural damage as well as chemical degradation caused by the beam of high-energy ions. These aspects are especially critical in highly-sensitive specimens. In this regard, ion beam milling under cryogenic conditions has been an established technique for damage mitigation. Here, we implement a cryo-focused ion beam approach to prepare specimens for APT measurements from a quadruple cation perovskite-based solar cell device with 19.7% efficiency. As opposed to room temperature FIB milling we found that cryo-milling considerably improved APT results in terms of yield and composition measurement, i.e. halide loss, both related to less defects within the APT specimen. Based on our approach we discuss the prospects of reliable atom probe measurements of perovskite based solar cell materials. An insight into the field evaporation behavior of the organic-inorganic molecules that compose the perovskite material is also given with the aim of expanding the applicability of APT experiments towards nano-characterization of complex organo-metal materials.

Klíčová slova:

Electric field – Electrostatics – Evaporation – Iodine – Lasers – Photovoltaic power – Specimen preparation and treatment – Ionization


Zdroje

1. Larson DJ. Local electrode atom probe tomography: a user's guide. New York: Springer; 2013. xvii, 318 pages p.

2. Gault B. Atom probe microscopy. New York: Springer; 2012. xxiii, 396 p. p.

3. Diercks DR, Li JJ, Beach JD, Wolden CA, Gorman BP. Atom Probe Tomography for Nanoscale Characterization of CdTe Device Absorber Layers and Interfaces. 2014 Ieee 40th Photovoltaic Specialist Conference (Pvsc). 2014:85–9.

4. Kelly TF, Larson DJ. Atom Probe Tomography 2012. Annu Rev Mater Res. 2012;42:1–31.

5. Choi P-P, Cojocaru-Mirédin O, Abou-Ras D, Caballero R, Raabe D, Smentkowski V, et al. Atom Probe Tomography of Compound Semiconductors for Photovoltaic and Light-Emitting Device Applications. Microscopy today. 2012;20:18–24.

6. Duarte MJ, Kostka A, Jimenez JA, Choi P, Klemm J, Crespo D, et al. Crystallization, phase evolution and corrosion of Fe-based metallic glasses: An atomic-scale structural and chemical characterization study. Acta Mater. 2014;71:20–30.

7. Kelly TF, Nishikawa O, Panitz JA, Prosa TJ. Prospects for Nanobiology with Atom-Probe Tomography. Mrs Bull. 2009;34(10):744–9.

8. Gordon LM, Joester D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature. 2011;469(7329):194–7. doi: 10.1038/nature09686 21228873

9. Prosa TJ, Larson DJ. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography. Microsc Microanal. 2017;23(2):194–209. doi: 10.1017/S1431927616012642 28162119

10. Joester D, Hillier A, Zhang Y, Prosa TJ. Organic Materials and Organic/Inorganic Heterostructures in Atom Probe Tomography. Microscopy Today. 2012;20(3):26–31.

11. Rothmann MU, Li W, Zhu Y, Liu A, Ku ZL, Bach U, et al. Structural and Chemical Changes to CH3NH3PbI3 Induced by Electron and Gallium Ion Beams. Advanced Materials. 2018;30(25).

12. Bassim ND, De Gregorio BT, Kilcoyne ALD, Scott K, Chou T, Wirick S, et al. Minimizing damage during FIB sample preparation of soft materials. J Microsc-Oxford. 2012;245(3):288–301.

13. Siemons W, Beekman C, Fowlkes JD, Balke N, Tischler JZ, Xu R, et al. Focused-ion-beam induced damage in thin films of complex oxide BiFeO3. Apl Mater. 2014;2(2).

14. Shukla N, Tripathi SK, Banerjee A, Ramana ASV, Rajput NS, Kulkarni VN. Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe. Appl Surf Sci. 2009;256(2):475–9.

15. Kim S, Park MJ, Balsara NP, Liu G, Minor AM. Minimization of focused ion beam damage in nanostructured polymer thin films. Ultramicroscopy. 2011;111(3):191–9. doi: 10.1016/j.ultramic.2010.11.027 21333856

16. McCaffrey JP, Phaneuf MW, Madsen LD. Surface damage formation during ion-beam thinning of samples for transmission electron microscopy. Ultramicroscopy. 2001;87(3):97–104. doi: 10.1016/s0304-3991(00)00096-6 11330503

17. Chang YH, Lu WJ, Guenole J, Stephenson LT, Szczpaniak A, Kontis P, et al. Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials. Nat Commun. 2019;10.

18. Volkert CA, Minor AM. Focused ion beam microscopy and micromachining. Mrs Bull. 2007;32(5):389–95.

19. Greene ME, Kelly TF, Larson DJ, Prosa TJ. Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography. J Microsc-Oxford. 2012;247(3):288–99.

20. Marko M, Hsieh C, Schalek R, Frank J, Mannella C. Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods. 2007;4(3):215–7. doi: 10.1038/nmeth1014 17277781

21. Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening Windows into the Cell: Focused-Ion-Beam Milling for Cryo-Electron Tomography. Biophys J. 2014;106(2):600a–a.

22. Rigort A, Plitzko JM. Cryo-focused-ion-beam applications in structural biology. Arch Biochem Biophys. 2015;581:122–30. doi: 10.1016/j.abb.2015.02.009 25703192

23. Medeiros JM, Bock D, Pilhofer M. Imaging bacteria inside their host by cryo-focused ion beam milling and electron cryotomography. Curr Opin Microbiol. 2018;43:62–8. doi: 10.1016/j.mib.2017.12.006 29291450

24. Reese MO, Glynn S, Kempe MD, McGott DL, Dabney MS, Barnes TM, et al. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy. 2018;3(11):1002–12.

25. Babayigit A, D'Haen J, Boyen HG, Conings B. Gas Quenching for Perovskite Thin Film Deposition. Joule. 2018;2(7):1205–9.

26. Conings B, Babayigit A, Klug MT, Bai S, Gauquelin N, Sakai N, et al. A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Advanced Materials. 2016;28(48):10701–+. doi: 10.1002/adma.201603747 27748527

27. Thompson K, Lawrence D, Larson DJ, Olson JD, Kelly TF, Gorman B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy. 2007;107(2–3):131–9. doi: 10.1016/j.ultramic.2006.06.008 16938398

28. Kotulak NA, Almutawah ZS, Watthage SC, Phillips A, Zhao DW, Knipling KE, et al. 3D imaging compositional map in one-step growth of CH3NH3PbI3. 2018 Ieee 7th World Conference on Photovoltaic Energy Conversion (Wcpec) (a Joint Conference of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec). 2018:0485–9.

29. Rusitzka KAK, Stephenson LT, Szczepaniak A, Gremer L, Raabe D, Willbold D, et al. A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Sci Rep-Uk. 2018;8.

30. Cojocaru-Mirédin O, Choi P, Abou-Ras D, Raabe D, editors. Characterization of CIGS grain boundaries using Atom Probe Tomography. 2011 37th IEEE Photovoltaic Specialists Conference; 2011 19–24 June 2011.

31. Yuan HF, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, et al. Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. J Phys Chem Lett. 2016;7(3):561–6. doi: 10.1021/acs.jpclett.5b02828 26804213

32. Xiao ZG, Yuan YB, Shao YC, Wang Q, Dong QF, Bi C, et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices (vol 14, pg 193, 2014). Nat Mater. 2015;14(2).

33. Greiwe GH, Balogh Z, Schmitz G. Atom probe tomography of lithium-doped network glasses. Ultramicroscopy. 2014;141:51–5. doi: 10.1016/j.ultramic.2014.03.007 24713345

34. Somayajulu GR. Dissociation Energies of Diatomic Molecules. J Chem Phys. 1960;33(5):1541–53.

35. Kingham DR. The Post-Ionization of Field Evaporated Ions—a Theoretical Explanation of Multiple Charge States. Surf Sci. 1982;116(2):273–301.

36. Huheey JE. Inorganic chemistry; principles of structure and reactivity. New York,: Harper & Row; 1972. xvi, 737 p. p.

37. Schnorr K, Senftleben A, Schmid G, Rudenko A, Kurka M, Meyer K, et al. Multiple ionization and fragmentation dynamics of molecular iodine studied in IR-XUV pump-probe experiments. Faraday Discuss. 2014;171:41–56. doi: 10.1039/c4fd00031e 25415043

38. Gault B, Saxey DW, Ashton MW, Sinnott SB, Chiaramonti AN, Moody MP, et al. Behavior of molecules and molecular ions near a field emitter. New J Phys. 2016;18.

39. Muller M, Saxey DW, Smith GDW, Gault B. Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy. 2011;111(6):487–92. doi: 10.1016/j.ultramic.2010.11.019 21159438

40. Saxey DW. Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy. 2011;111(6):473–9. doi: 10.1016/j.ultramic.2010.11.021 21159435

41. Kubicki DJ, Prochowicz D, Hofstetter A, Zakeeruddin SM, Gratzel M, Emsley L. Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)(x)(FA)(1-x)Pbl(3) Hybrid Perovskites from Solid-State NMR. J Am Chem Soc. 2017;139(40):14173–80. doi: 10.1021/jacs.7b07223 28892374


Článek vyšel v časopise

PLOS One


2020 Číslo 1