Gait asymmetry in glucocerebrosidase mutation carriers with Parkinson’s disease


Autoři: Anjali Gera aff001;  Joan A. O’Keefe aff002;  Bichun Ouyang aff001;  Yuanqing Liu aff001;  Samantha Ruehl aff001;  Mark Buder aff001;  Jessica Joyce aff002;  Nicolette Purcell aff002;  Gian Pal aff001
Působiště autorů: Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America aff001;  Cell & Molecular Medicine, Rush University, Chicago, Illinois, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226494

Souhrn

Background

GBA mutation carriers with PD (PD-GBA) are at higher risk of cognitive decline, but there is limited data regarding whether there are differences in gait dysfunction between GBA mutation and non-mutation carriers with PD.

Objectives/Methods

The primary aim of this study was to use quantitative inertial sensor-based gait analysis to compare gait asymmetry in 17 PD-GBA subjects, 17 non-mutation carriers with PD, and 15 healthy control subjects using parameters that had gait laterality and were markers of bradykinesia, in particular arm swing velocity and arm swing range of motion and stride length.

Results

Arm swing velocity was more symmetric in PD-GBA subjects vs. non-mutation carriers in the OFF state (12.5 +/- 8.3 vs. 22.9 +/- 11.8%, respectively, p = 0.018). In the ON-medication state, non-mutation carriers with PD, but not PD-GBA subjects, exhibited arm swing velocity (16.8 +/- 8.6 vs. 22.9 +/- 11.8%, p = 0.006) and arm range of motion (26.7 +/- 16.3 vs. 33.4 +/- 18.6%, p = 0.02) that was more asymmetric compared with the OFF-medication state.

Conclusions

In the OFF medication state, arm swing velocity asymmetry may be a useful parameter in helping to distinguish GBA mutation carriers with PD from non-mutation carriers.

Klíčová slova:

Arms – DNA sequence analysis – Gait analysis – Heredity – Levodopa – Motion – Parkinson disease – Velocity


Zdroje

1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5: 525–535. doi: 10.1016/S1474-4422(06)70471-9 16713924

2. Scholz SW, Jeon BS. GBA mutations and Parkinson disease: when genotype meets phenotype. Neurology. 2015;84: 866–867. doi: 10.1212/WNL.0000000000001321 25653294

3. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of GBA mutations in PD. N Engl J Med. 2009; 361: 1651–1661. doi: 10.1056/NEJMoa0901281 19846850

4. Alcalay RN, Levy OA, Waters CC, Fahn S, Ford B, Kuo SH, et al. GBA activity in PD with and without GBA mutations. Brain. 2015; 138(Pt 9): 2648–2658. doi: 10.1093/brain/awv179 26117366

5. Alcalay RN, Caccappolo E, Mejia-Santana H, Tang M, Rosado L, Orbe Reilly M, et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology 2012; 78: 1434–1440. doi: 10.1212/WNL.0b013e318253d54b 22442429

6. Angeli A, Mencacci NE, Duran R, Aviles-Olmos I, Kefalopoulou Z, Candelario J, et al. Genotype and phenotype in Parkinson’s disease: lessons in heterogeneity from deep brain stimulation. Mov Disord. 2013 Sep;28(10):1370–5. doi: 10.1002/mds.25535 23818421

7. Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009; 132: 1783–1794. doi: 10.1093/brain/awp044 19286695

8. Beavan MS, Schapira HV. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Annals of Medicine. 2013; 45:8, 511–521. doi: 10.3109/07853890.2013.849003 24219755

9. Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013; 136: 392–399. doi: 10.1093/brain/aws318 23413260

10. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, et al. Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol. 2016; 73: 1217–1224. doi: 10.1001/jamaneurol.2016.2245 27571329

11. Pal G, Goetz CG. Assessing bradykinesia in parkinsonian disorders. Front Neurol. 2013 Jun 3;4:54. doi: 10.3389/fneur.2013.00054 23760683

12. Chien SL, Lin SZ, Liang CC, Soong YS, Lin SH, Hsin YL, et al. The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism Relat Disord. 2006; 12: 438–442. doi: 10.1016/j.parkreldis.2006.04.004 16798053

13. Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson’s Disease. Mov Disord. 2015; 30: 1361–1370. doi: 10.1002/mds.26269 26095928

14. Roggendorf J, Chen S, Baudrexel S, Van de LS, Seifried C, Hilker R. Arm swing asymmetry in PD measured with ultrasound-based motion analysis during treadmill gait. Gait Posture. 2012; 35: 116–120. doi: 10.1016/j.gaitpost.2011.08.020 21962405

15. Dewey DC, Miocinovic S, Bernstein I, Khemani P, Dewey RB 3rd, Querry R, Chitnis S, Dewey RB Jr. Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease. J Neurol Sci. 2014 Oct 15;345(1–2):131–8. doi: 10.1016/j.jns.2014.07.026 25082782

16. Postuma RB, Poewe W, Litvan I, Lewis S, Lang AE, Halliday G, et al. Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2018; 33: 1601–1608. doi: 10.1002/mds.27362 30145797

17. Nichols WC, Pankratz N, Marek DK, Pauciulo MW, Elsaesser VE, Halter CA, et al. Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 2009; 72: 310–316. doi: 10.1212/01.wnl.0000327823.81237.d1 18987351

18. Pankratz N, Kissell DK, Pauciulo MW, Halter CA, Rudolph A, Pfeiffer RF, et al. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations. Neurology 2009; 73: 279–286. doi: 10.1212/WNL.0b013e3181af7a33 19636047

19. Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, et al. Survival and dementia in GBA-associated Parkinson’s disease: The mutation matters. Ann Neurol. 2016 Nov;80(5):662–673. doi: 10.1002/ana.24777 27632223

20. Thompson B (Editor) (1988) The Importance of Planned or Focused Comparisons in OVA Research, Measurement and Evaluation in Counseling and Development, 21:3, 99–101, doi: 10.1080/07481756.1988.12022889

21. Malek N, Weil RS, Bresner C, Lawton MA, Grosset KA, Tan M, et al. Features of GBA-associated Parkinson’s disease at presentation in the UK Tracking Parkinson’s study. J Neurol Neurosurg Psychiatry 2018; 89: 702–709. doi: 10.1136/jnnp-2017-317348 29378790

22. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, et al. CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 2011; 108: 12101–12106. doi: 10.1073/pnas.1108197108 21730160

23. Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, et al. Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing. Ann Neurol 2011; 69: 940–953. doi: 10.1002/ana.22400 21472771

24. Woodard CM, Campos BA, Kuo SH, Nirenberg MJ, Nestor MW, Zimmer M, et al. iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep 2014; 9: 1173–1182. doi: 10.1016/j.celrep.2014.10.023 25456120

25. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 2011; 146: 37–52. doi: 10.1016/j.cell.2011.06.001 21700325

26. McGlinchey RP, Lee JC. Emerging Insights into the Mechanistic Link between α-Synuclein and glucocerebrosidase in Parkinson’s Disease. Biochem Soc Trans. 2013; 41(6): 1509–1512. doi: 10.1042/BST20130158 24256245

27. McNeil A, Wu RM, Tzen KY, Aguiar PC, Arbelo JM, Barone P, et al. Dopaminergic neuronal imaging in genetic Parkinson’s disease: insights into pathogenesis. PLoS One 2013; 8: e69190. doi: 10.1371/journal.pone.0069190 23935950

28. Gasca-Salas C, Clavero P, García-García D, Obeso JA, Rodriguez-Oroz MC. Significance of visual hallucinations and cerebral hypometabolism in the risk of dementia in Parkinson’s disease patients with mild cognitive impairment. Hum Brain Mapp 2016; 37: 968–977. doi: 10.1002/hbm.23080 26663702

29. Beavan M, McNeill A, Proukakis C, Hughes DA, Mehta A, Schapira AH. Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation‐positive cohort. JAMA Neurol. 2015; 72: 201–208. doi: 10.1001/jamaneurol.2014.2950 25506732

30. Sardi P, Viel C, Clarke J, Treleaven CM, Richards AM, Park H, et al. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci U S A 2017; 114: 2699–2704. doi: 10.1073/pnas.1616152114 28223512

31. Sardi SP, Simuni T. New Era in disease modification in Parkinson’s disease: Review of genetically targeted therapeutics. Parkinsonism Relat Disord. 2019 Feb;59:32–38. doi: 10.1016/j.parkreldis.2018.10.025 30391183

32. Mancini M, Horak FB. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev Med Devices. 2016 May;13(5):455–62. doi: 10.1586/17434440.2016.1153421 26872510


Článek vyšel v časopise

PLOS One


2020 Číslo 1