Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains


Autoři: Michael H. Norris aff001;  Diansy Zincke aff001;  Owen P. Leiser aff003;  Helen Kreuzer aff003;  Ted L. Hadfied aff001;  Jason K. Blackburn aff001
Působiště autorů: Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, Florida, United States of America aff001;  Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America aff002;  Chemical and Biological Signature Science, Pacific Northwest National Laboratory, Richland, Washington, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228270

Souhrn

Bacillus anthracis is the causative agent of anthrax in animals and humans. The organism lies in a dormant state in the soil until introduced into an animal via, ingestion, cutaneous inoculation or inhalation. Once in the host, spores germinate into rapidly growing vegetative cells elaborating toxins. When animals die of anthrax, vegetative bacteria sporulate upon nutrient limitation in the carcass or soil while in the presence of air. After release into the soil environment, spores form a localized infectious zone (LIZ) at and around the carcass. Laboratory strains of B. anthracis produce fewer proteins associated with growth and sporulation compared to wild strains isolated from recent zoonotic disease events. We verified wild strains grow more rapidly than lab strains demonstrating a greater responsiveness to nutrient availability. Sporulation was significantly more rapid in these wild strains compared to lab strains, indicating wild strains are able to sporulate faster due to nutrient limitation while laboratory strains have a decrease in the speed at which they utilize nutrients and an increase in time to sporulation. These findings have implications for disease control at the LIZ as well as on the infectious cycle of this dangerous zoonotic pathogen.

Klíčová slova:

Anthrax – Bacillus anthracis – Bacterial spores – Decontamination – Deer – Veterinary diseases – Wildlife – Bacterial sporulation


Zdroje

1. Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, et al. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biological Reviews. 2018;93: 1813–1831. 29732670

2. Carlson CJ, Kracalik IT, Ross N, Alexander KA, Hugh-Jones ME, Fegan M, et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat Microbiol. 2019; 1. doi: 10.1038/s41564-019-0435-4 31086311

3. Halvorson HO. Two generations of spore research: from father to son. Microbiologia (Madrid, Spain). 1997;13: 131–48.

4. Manchee RJ, Broster MG, Melling J, Henstridge RM, Stagg AJ. Bacillus anthracis on Gruinard Island. Nature. 1981;294: 254–255. doi: 10.1038/294254a0 6795509

5. Turner WC, Kausrud KL, Krishnappa YS, Cromsigt JPGM, Ganz HH, Mapaure I, et al. Fatal attraction: vegetation responses to nutrient inputs attract foraging herbivores to infectious anthrax carcass sites. Proceedings of the Royal Society B: Biological Sciences. 2014;281: 20141785. doi: 10.1098/rspb.2014.1785 25274365

6. Hugh-Jones M, Blackburn J. The ecology of Bacillus anthracis. Molecular Aspects of Medicine. 2009;30: 356–367. doi: 10.1016/j.mam.2009.08.003 19720074

7. Alexander KA, Lewis BL, Marathe M, Eubank S, Blackburn JK. Modeling of Wildlife-Associated Zoonoses: Applications and Caveats. Vector-Borne and Zoonotic Diseases. 2012;12: 1005–1018. doi: 10.1089/vbz.2012.0987 23199265

8. Blackburn JK, Mullins JC, Van Ert M, Hadfield T, O’Shea B, Hugh-Jones ME. The necrophagous fly anthrax transmission pathway: Empirical and genetic evidence from a wildlife epizootic in west Texas 2010. Vector-Borne and Zoonotic Diseases. 2014;14: 576–583.

9. Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. Am J Trop Med Hyg. 2007;77: 1103–10. 18165531

10. Blackburn JK, Asher V, Stokke S, Hunter DL, Alexander KA. Dances with Anthrax: Wolves (Canis lupus) Kill Anthrax Bacteremic Plains Bison (Bison bison bison) in Southwestern Montana. Journal of Wildlife Diseases. 2014;50: 393–396. doi: 10.7589/2013-08-204 24484485

11. Leiser OP, Blackburn JK, Hadfield TL, Kreuzer HW, Wunschel DS, Bruckner-Lea CJ. Laboratory strains of Bacillus anthracis exhibit pervasive alteration in expression of proteins related to sporulation under laboratory conditions relative to genetically related wild strains. PLOS ONE. 2018;13: e0209120. doi: 10.1371/journal.pone.0209120 30557394

12. Lindeque PM, Turnbull PCB. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J Vet Res. 1994;61: 71–83. 7898901

13. Wilson D. E., Chosewood L. C. Biosafety in microbiological and biomedical laboratories, 5th ed. Atlanta, GA.; 2007.

14. ProMED-Mail. ANTHRAX, BOVINE—USA (03): (COLORADO). In: 20120809.1236375. 2012.

15. Lista F, Faggioni G, Valjevac S, Ciammaruconi A, Vaissaire J, Le Doujet C, et al. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis. BMC microbiology. 2006;6: 33. doi: 10.1186/1471-2180-6-33 16600037

16. Mullins J. Combining genetic diversity and spatio-temporal data to characterize the spatial ecology of anthrax across multiple scales. University of Florida. 2013.

17. Sterne M. Variation in Bacillus anthracis. Onderstepoort Journal of Veterinary Science and Animal Industry. 1937;8.

18. Ravel J, Jiang L, Stanley ST, Wilson MR, Decker RS, Read TD, et al. The complete genome sequence of Bacillus anthracis Ames “Ancestor”. J Bacteriol. 2009;191: 445–446. doi: 10.1128/JB.01347-08 18952800

19. Smith NR, Gibson T, Gordon RE, Sneath PHA. Type cultures and proposed neotype cultures of somespecies in the genus Bacillus. Microbiology,. 1964;34: 269–272. doi: 10.1099/00221287-34-2-269 14135533

20. Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, Ravel J, et al. Global genetic population structure of Bacillus anthracis. PLOS ONE. 2007;2: e461. doi: 10.1371/journal.pone.0000461 17520020

21. Blackburn JK, Goodin DG. Differentiation of Springtime Vegetation Indices Associated with Summer Anthrax Epizootics in West Texas, USA Deer. Journal of wildlife diseases. 2013;49: 699–703. doi: 10.7589/2012-10-253 23778625

22. Yang A, Mullins J, Van Ert MN, Bowen R, Hadfield TL, Blackburn JK. Predicting the geographic distribution of the Bacillus anthracis A1.a/Western North America Sub-lineage for the Continental United States: new outbreaks, new genotypes, and new climate data. American Journal of Tropical Medicine and Hygiene. 2019;In Press.

23. Minett F. Sporulation and viability of B. anthracis in relation to environmental temperature and humidity. Journal of Comparative Pathology and Therapeutics. 1950;60: 161–176.

24. Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894. Anthrax in animals. World Health Organization; 2008. https://www.ncbi.nlm.nih.gov/books/NBK310481/

25. Dragon DC, Rennie RP. Evaluation of spore extraction and purification methods for selective recovery of viable Bacillus anthracis spores. Letters in Applied Microbiology. 2001;33: 100–105. 11472515

26. Davies DG. The influence of temperature and humidity on spore formation and germination in Bacillus anthracis. J Hyg (Lond). 1960;58: 177–186.

27. Sastalla I, Leppla SH. Occurrence, recognition, and reversion of spontaneous, sporulation-deficient Bacillus anthracis mutants that arise during laboratory culture. Microbes Infect. 2012;14: 387–391. doi: 10.1016/j.micinf.2011.11.009 22166343

28. Saile E, Koehler TM. Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol. 2002;184: 370–380. doi: 10.1128/JB.184.2.370-380.2002 11751813

29. Sastalla I, Rosovitz MJ, Leppla SH. Accidental selection and intentional restoration of sporulation-deficient Bacillus anthracis mutants. Appl Environ Microbiol. 2010;76: 6318–6321. doi: 10.1128/AEM.00950-10 20639373

30. Mignot T, Mesnage S, Couture-Tosi E, Mock M, Fouet A. Developmental switch of S-layer protein synthesis in Bacillus anthracis. Molecular Microbiology. 2002;43: 1615–1627. 11952909

31. Ohashi Y, Inaoka T, Kasai K, Ito Y, Okamoto S, Satsu H, et al. Expression profiling of translation-associated genes in sporulating Bacillus subtilis and consequence of sporulation by gene inactivation. Bioscience, Biotechnology, and Biochemistry. 2003;67: 2245–2253. doi: 10.1271/bbb.67.2245 14586115


Článek vyšel v časopise

PLOS One


2020 Číslo 1