#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tanopicobia gen. nov., a new genus of quill mites, its phylogenetic placement in the subfamily Picobiinae (Acariformes: Syringophilidae) and picobiine relationships with avian hosts


Autoři: Maciej Skoracki aff001;  Bozena Sikora aff001;  Leszek Jerzak aff003;  Martin Hromada aff002
Působiště autorů: Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland aff001;  Laboratory and Museum of Evolutionary Ecology, Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, Prešov, Slovakia aff002;  Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225982

Souhrn

A new monotypic genus Tanopicobia gen. nov. is established for a new species Tanopicobia trachyphoni sp. nov., parasitizing Trachyphonus erythrocephalus Cabanis, 1878 (Piciformes: Lybiidae) from Tanzania. In phylogenetic analyses based on morphological data and constructed using the maximum parsimony approach, this taxon falls within the subfamily Picobiinae Johnston and Kethley, 1973 in the Neopicobia-species-group as closely related to the genus Pipicobia Glowska and Schmidt, 2014. Tanopicobia differs from Pipicobia by the following features in females: genital setae absent; setae ve are situated far and posteromedial to the level of setal bases vi; setae 3a are thick and knobbed. Additionally, a new generic key for subfamily Picobiinae is constructed and general host-parasite ecological and phylogenetic relationships are discussed. Picobiines are present in several lineages of neoavian birds, from basal Galloanseres to terminal Telluraves, which are infested by 70 (89.7% of all) species of these ectoparasites.

Klíčová slova:

Animal phylogenetics – Birds – Feathers – Host-pathogen interactions – Mites – New species reports – Passerines – Phylogenetic analysis


Zdroje

1. Skoracki M, Sikora B, Spicer GS. A review of the subfamily Picobiinae Johnston and Kethley, 1973 (Acariformes: Prostigmata: Syringophilidae). Zootaxa. 2016;4113(1):1–95. doi: 10.11646/zootaxa.4113.1.1 27395108

2. Zmudzinski M, Skoracki M. An updated check-list of the family Syringophilidae (Acariformes: Prostigmata). 2018. [cited 2019 May 20]. Available from: https://sites.google.com/site/syringophilidae/

3. Casto SD. Cuculiphilus lobatus gen. n., sp. n. Representing a new subfamily of quill mites (Acarina: Syringophilidae) from the groove-billed ani, Crotophaga sulcirostris (Cuculiformes: Cuculidae). Southwest Nat. 1977;22(2):169–175.

4. Skoracki M, Spicer GS, OConnor BM. A review of mites of the subfamily Picobiinae Johnston & Kethley, 1973 (Prostigmata: Syringophilidae) from North American birds. Syst Parasitol. 2014;87(1):99–110. doi: 10.1007/s11230-013-9460-5 24395579

5. Skoracki M. Quill mites (Acari: Syringophilidae) of the Palaearctic region. Zootaxa. 2011;2481(1):1–415.

6. Skoracki M, Magowski W, Dabert J. Picobia polonica sp. n. (Acari: Prostigmata: Syringophilidae), a new species of quill mite from the domestic hen, Gallus gallus domesticus (Aves: Phasianidae). Folia Parasitol. 2001;48(2):154–158. doi: 10.14411/fp.2001.024 11437131

7. Skoracki M, Zabludovskaya S, Bochkov A. A review of Prostigmata (Acariformes: Trombidiformes) permanently associated with birds. Acarina. 2012;20(2):67–107.

8. Skoracki M, Hromada M, Zmudzinski M, Unsoeld M, Sikora B. Parasitic quill mites of the family Syringophilidae (Acariformes: Prostigmata) associated with sub-Saharan Sunbirds (Passeriformes: Nectariniidae): species composition and host-parasite relationships. J Med Entomol. 2018;55(6):1464–1477. doi: 10.1093/jme/tjy106 30020479

9. Grandjean F. Les segments post-larvaires de l’hysterosoma chez les Oribates (Acariens). Bull. Soc. zool. Fr. 1939;64:273–284.

10. Kethley JB. Acarina: Prostigmata (Actinedida). In: Dindal DL, editor. Soil Biology Guide. New York: Wiley and Sons; 1990. pp. 667–754.

11. Grandjean F. Observations sur les acariens de la famille des Stigmaeidae. Archives des Sciences Physiques et Naturelles. 1944;26:103–131.

12. Clements JF, Schulenberg TS, Iliff MJ, Roberson D, Fredericks TA, Sullivan BL, et al. The eBird/Clements checklist of birds of the world: v2018. 2018. [cited 2019 May 20]. Available from: http://www.birds.cornell.edu/clementschecklist/download/

13. Mironov SV. Phylogeny of feather mites of the subfamily Pterodectinae (Acariformes: Proctophyllodidae) and their host associations with passerines (Passeriformes). Proceedings of the Zoological Institute RAS. 2009;313:97–118.

14. Page RDM. NDE: NEXUS Data Editor. Glasgow, England: University of Glasgow; 2001.

15. Nixon KC. Winclada. Ithaca, New York; 1999.

16. Strong EE, Lipscomb D. Character coding and inapplicable data. Cladistics. 1999;15:363–371.

17. Brazeau MD. Problematic character coding methods in morphology and their effects. Biol J Linn Soc Lond. 2011;104:489–498.

18. Swofford DL. PAUP*. Phylogenetic analysis using parsimony (and other methods). Sunderland, Massachusetts: Sinauer Associates; 2002.

19. Müller K. PRAP-computation of Bremer support for large data sets. Mol Phylogenet Evol. 2004;31(2):780–782. doi: 10.1016/j.ympev.2003.12.006 15062810

20. Page RDM. TreeView. Glasgow, UK: University of Glasgow; 1988.

21. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631 23123857

22. Møller AP, Díaz M, Flensted-Jensen E, Grim T, Ibáñez-Álamo JD, Jokimäki J, et al. Urbanized birds have superior establishment success in novel environments. Oecologia. 2015;178(3):943–950. doi: 10.1007/s00442-015-3268-8 25694044

23. Mikula P, Morelli F, Lučan RK, Jones DN, Tryjanowski P. Bats as prey of diurnal birds: a global perspective. Mamm Rev. 2016;46(3):160–174.

24. Hromada M, Klimovicova M, Unsold M, Skoracki M. Host-parasite relationships in the system composed by cuckoos and quill mites. Syst Appl Acarol. 2016;21(4):528–536.

25. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214 17996036

26. Rambaut, A. FigTree v1.4.4. 2018 [cited 2019 May 20] Available from: http://tree.bio.ed.ac.uk/software/figtree/

27. Dormann CF, Gruber B, Fundt J. Introducing the bipartite package: analyzing ecological networks. R News. 2008;8:8–11.

28. Glowska E, Schmidt BK. New taxa of the subfamily Picobiinae (Cheyletoidea: Syringophilidae) parasitizing antbirds and gnateaters (Passeriformes: Thamnophilidae, Conopophagidae) in Guyana. Zootaxa. 2014; 3861(2):193–200. doi: 10.11646/zootaxa.3861.2.7 25283403

29. Skoracki M, Glowska E, Bochkov AV. Phylogeny of quill mites of the family Syringophilidae (Acari: Prostigmata) based on their external morphology. Eur J Entomol. 2013;110(4):663–675.

30. Fain A, Bochkov AV, Mironov SV. New genera and species of quill mites of the family Syringophilidae (Acari: Prostigmata). Bull Inst R Sci Nat Belg Entomol. 2000;70:33–70.

31. Kethley JB. A Revision of the Family Syringophilidae (Prostigmata: Acarina). Contrib Am Entomol Inst. 1970;5:1–76.

32. Skoracki M, Sikora B. Tinamiphilopsis elegans gen. nov. et sp. nov., a first record of the quill mites (Acari, Syringophilidae) from tinamou birds (Tinamiformes, Tinamidae). Acta Parasitol. 2004;49(4):348–352.

33. Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, et al. Diversification of Neoaves: Integration of molecular sequence data and fossils. Biol Lett. 2006;2(4):543–47. doi: 10.1098/rsbl.2006.0523 17148284

34. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–1768. doi: 10.1126/science.1157704 18583609

35. Wang N, Braun EL, Kimball RT. Testing hypotheses about the sister group of the passeriformes using an independent 30-locus data set. Mol Biol Evol. 2012;29(2):737–750. doi: 10.1093/molbev/msr230 21940640

36. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLOS One. 2013;8(1):e54848. doi: 10.1371/journal.pone.0054848 23382987

37. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:320–1331.

38. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–573. doi: 10.1038/nature15697 26444237

39. Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66(5):857–79. doi: 10.1093/sysbio/syx041 28369655

40. Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, Field DJ, et al. A phylogenomic supertree of birds. Diversity. 2019;11(7):109.

41. Cracraft J. Toward a phylogenetic classification of the recent birds of the World (Class Aves). Auk. 1981;98(4):681–714.

42. Payevsky VA. Phylogeny and classification of passerine birds, passeriformes. Biology Bulletin Reviews. 2014;133(4):143–156

43. Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linn Soc. 2007;149(1):1–95. doi: 10.1111/j.1096-3642.2006.00293.x 18784798

44. Yuri T, Kimball RT, Harshman J, Bowie RCK, Braun MJ, Chojnowski JL, et al. Parsimony and model-based analyses of indels in avian nuclear genes reveal congruent and incongruent phylogenetic signals. Biology (Basel). 2013;22(1):419–444.

45. Ericson PGP. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr. 2012;39(5):813–824.

46. Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL. Identifying localized biases in large datasets: a case study using the avian tree of life. Mol Phylogenet Evol. 2013;69(3):1021–1032. doi: 10.1016/j.ympev.2013.05.029 23791948

47. Braun EL, Cracraft J, Houde P. Resolving the avian tree of life from top to bottom: The promise and potential boundaries of the phylogenomic era. In: Kraus RHS, editor: Avian genomics in ecology and evolution. Cham: Springer; 2019. pp. 151–210.

48. Field DJ, Berv JS, Hsiang AY, Lanfear R, Landis MJ, Dornburg A. Timing the extant avian radiation: The rise of modern birds, and the importance of modeling molecular rate variation. PeerJ Preprints, 2019;7:e27521v1 https://doi.org/10.7287/peerj.preprints.27521v1

49. Houde P, Braun EL, Narula N, Minjares U, Mirarab S. Phylogenetic signal of indels and the Neoavian radiation. Diversity. 2019;11(7):108.

50. Claramunt S, Cracraft J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci Adv. 2015;1(11):e1501005. doi: 10.1126/sciadv.1501005 26824065

51. Skoracki M, Oconnor B. New taxa of quill mites (Acari: Cheyletoidea: Syringophilidae). Zootaxa. 2010;2341:1–32.

52. Maclean GL. Die systematische Stellung der Flughühner (Pteroclididae).J Ornithol. 1967;108(2):203–217.

53. Suh A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool Scr. 2016; 45(S1):50–62.

54. Hromada M, Klimovičová M. From dusty collections to descriptions of new species–birds in Sarisske Museum Bardejov as valuable source for investigating mite biodiversity. Acta Universitatis Prešoviensis, Folia Oecologica. 2015;7(2):98–108.

55. Dittmar K. Old parasites for a new world: the future of paleoparasitological research. A Review. J Parasitol, 2009;95(2):365–371. doi: 10.1645/GE-1676.1 18702568

56. Dittmar K, Araújo A, Reinhard KJ. The study of parasites through time: archaeoparasitology and paleoparasitology. In: Grauer AL, editor. A companion to Paleopathology. Oxford, UK; Blackwell Publishing: 2012. pp. 170–90.

57. Araújo A, Reinhard K, Ferreira LF. Palaeoparasitology–human parasites in ancient material. Fossil Parasites. Adv Parasit, 2015;90:349–387.

58. Mooi RD, Gill AC. Phylogenies without synapomorphies–a crisis in fish systematics: time to show some character. Zootaxa. 2010;2450:26–40.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#