Radiomics signature for prediction of lateral lymph node metastasis in conventional papillary thyroid carcinoma


Autoři: Vivian Y. Park aff001;  Kyunghwa Han aff001;  Hye Jung Kim aff002;  Eunjung Lee aff003;  Ji Hyun Youk aff004;  Eun-Kyung Kim aff001;  Hee Jung Moon aff001;  Jung Hyun Yoon aff001;  Jin Young Kwak aff001
Působiště autorů: Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea aff001;  Department of Radiology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea aff002;  Department of Computational Science and Engineering, Yonsei University, Seoul, Korea aff003;  Department of Radiology, Gangnam Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227315

Souhrn

Purpose

Preoperative neck ultrasound (US) for lateral cervical lymph nodes is recommended for all patients undergoing thyroidectomy for thyroid malignancy, but it is operator dependent. We aimed to develop a radiomics signature using US images of the primary tumor to preoperatively predict lateral lymph node metastasis (LNM) in patients with conventional papillary thyroid carcinoma (cPTC).

Methods

Four hundred consecutive cPTC patients from January 2004 to February 2006 were enrolled as the training cohort, and 368 consecutive cPTC patients from March 2006 to February 2007 served as the validation cohort. A radiomics signature, which consisted of 14 selected features, was generated by the least absolute shrinkage and selection operator (LASSO) regression model in the training cohort. The discriminating performance of the radiomics signature was assessed in the validation cohort with the area under the receiver operating characteristic curve (AUC).

Results

The radiomics signature was significantly associated with lateral cervical lymph node status (p < 0.001). The AUC of its performance in discriminating metastatic and non-metastatic lateral cervical lymph nodes was 0.710 (95% CI: 0.649–0.770) in the training cohort and was 0.621 (95% CI: 0.560–0.682) in the validation cohort.

Conclusions

The present study showed that US radiomic features of the primary tumor were associated with lateral cervical lymph node status. Although their discriminatory performance was slightly lower in the validation cohort, our study shows that US radiomic features of the primary tumor alone have the potential to predict lateral LNM.

Klíčová slova:

Cancer detection and diagnosis – Diagnostic medicine – Lymph nodes – Metastasis – Physicians – Surgical and invasive medical procedures – Thyroid – Thyroid carcinomas


Zdroje

1. Londero SC, Krogdahl A, Bastholt L, Overgaard J, Pedersen HB, Hahn CH, et al. Papillary thyroid carcinoma in Denmark, 1996–2008: outcome and evaluation of established prognostic scoring systems in a prospective national cohort. Thyroid. 2015;25: 78–84. doi: 10.1089/thy.2014.0294 25368981

2. Ahn HS, Kim HJ, Kim KH, Lee YS, Han SJ, Kim Y, et al. Thyroid Cancer Screening in South Korea Increases Detection of Papillary Cancers with No Impact on Other Subtypes or Thyroid Cancer Mortality. Thyroid. 2016;26: 1535–1540. doi: 10.1089/thy.2016.0075 27627550

3. Cho BY, Choi HS, Park YJ, Lim JA, Ahn HY, Lee EK, et al. Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid. 2013;23: 797–804. doi: 10.1089/thy.2012.0329 23427907

4. Kim H, Kim TH, Choe JH, Kim JH, Kim JS, Oh YL, et al. Patterns of Initial Recurrence in Completely Resected Papillary Thyroid Carcinoma. Thyroid. 2017. doi: 10.1089/thy.2016.0648 28446060

5. Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22: 1144–1152. doi: 10.1089/thy.2012.0043 23083442

6. Lundgren CI, Hall P, Dickman PW, Zedenius J. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer. 2006;106: 524–531. doi: 10.1002/cncr.21653 16369995

7. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26: 1–133. doi: 10.1089/thy.2015.0020 26462967

8. Ito Y, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, et al. Ultrasonographically and anatomopathologically detectable node metastases in the lateral compartment as indicators of worse relapse-free survival in patients with papillary thyroid carcinoma. World J Surg. 2005;29: 917–920. doi: 10.1007/s00268-005-7789-x 15951927

9. Wu LM, Gu HY, Qu XH, Zheng J, Zhang W, Yin Y, et al. The accuracy of ultrasonography in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma: A meta-analysis. Eur J Radiol. 2012;81: 1798–1805. doi: 10.1016/j.ejrad.2011.04.028 21536396

10. Moon HJ, Kim EK, Yoon JH, Kwak JY. Differences in the diagnostic performances of staging US for thyroid malignancy according to experience. Ultrasound Med Biol. 2012;38: 568–573. doi: 10.1016/j.ultrasmedbio.2012.01.002 22341048

11. Moon HJ, Yoon JH, Kwak JY, Chung WY, Nam KH, Jeong JJ, et al. Positive predictive value and interobserver variability of preoperative staging sonography for thyroid carcinoma. AJR Am J Roentgenol. 2011;197: W324–330. doi: 10.2214/AJR.10.5576 21785060

12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2015: 151169. doi: 10.1148/radiol.2015151169 26579733

13. Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin Cancer Res. 2017. doi: 10.1158/1078-0432.ccr-16-2910 28280088

14. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol. 2016;34: 2157–2164. doi: 10.1200/JCO.2015.65.9128 27138577

15. Qu J, Shen C, Qin J, Wang Z, Liu Z, Guo J, et al. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer. Eur Radiol. 2019;29: 906–914. doi: 10.1007/s00330-018-5583-z 30039220

16. Liu T, Ge X, Yu J, Guo Y, Wang Y, Wang W, et al. Comparison of the application of B-mode and strain elastography ultrasound in the estimation of lymph node metastasis of papillary thyroid carcinoma based on a radiomics approach. Int J Comput Assist Radiol Surg. 2018;13: 1617–1627. doi: 10.1007/s11548-018-1796-5 29931410

17. Liu T, Zhou S, Yu J, Guo Y, Wang Y, Zhou J, et al. Prediction of Lymph Node Metastasis in Patients With Papillary Thyroid Carcinoma: A Radiomics Method Based on Preoperative Ultrasound Images. Technol Cancer Res Treat. 2019;18: 1533033819831713. doi: 10.1177/1533033819831713 30890092

18. Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological. 1996;58: 267–288 WOS:A1996TU31400017

19. Park VY, Kim EK, Moon HJ, Yoon JH, Kwak JY. The thyroid imaging reporting and data system on US, but not the BRAFV600E mutation in fine-needle aspirates, is associated with lateral lymph node metastasis in PTC. Medicine (Baltimore). 2016;95: e4292. doi: 10.1097/md.0000000000004292 27442672

20. Kwak JY, Kim EK, Kim MJ, Son EJ, Chung WY, Park CS, et al. Papillary microcarcinoma of the thyroid: predicting factors of lateral neck node metastasis. Ann Surg Oncol. 2009;16: 1348–1355. doi: 10.1245/s10434-009-0384-x 19224278

21. Cho E, Kim EK, Moon HJ, Yoon JH, Park VY, Kwak JY. High suspicion US pattern on the ATA guidelines, not cytologic diagnosis, may be a predicting marker of lymph node metastasis in patients with classical papillary thyroid carcinoma. Am J Surg. 2017. doi: 10.1016/j.amjsurg.2017.12.006 29268941

22. Wu S, Zheng J, Li Y, Yu H, Shi S, Xie W, et al. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer. Clin Cancer Res. 2017;23: 6904–6911. doi: 10.1158/1078-0432.CCR-17-1510 28874414

23. Chen SJ, Chang CY, Chang KY, Tzeng JE, Chen YT, Lin CW, et al. Classification of the thyroid nodules based on characteristic sonographic textural feature and correlated histopathology using hierarchical support vector machines. Ultrasound Med Biol. 2010;36: 2018–2026. doi: 10.1016/j.ultrasmedbio.2010.08.019 21092831

24. Grani G, D'Alessandri M, Carbotta G, Nesca A, Del Sordo M, Alessandrini S, et al. Grey-Scale Analysis Improves the Ultrasonographic Evaluation of Thyroid Nodules. Medicine (Baltimore). 2015;94: e1129. doi: 10.1097/md.0000000000001129 26166117

25. Kim SY, Kim EK, Moon HJ, Yoon JH, Kwak JY. Application of Texture Analysis in the Differential Diagnosis of Benign and Malignant Thyroid Nodules: Comparison With Gray-Scale Ultrasound and Elastography. AJR Am J Roentgenol. 2015;205: W343–351. doi: 10.2214/AJR.14.13825 26295671

26. Bhatia KS, Lam AC, Pang SW, Wang D, Ahuja AT. Feasibility Study of Texture Analysis Using Ultrasound Shear Wave Elastography to Predict Malignancy in Thyroid Nodules. Ultrasound Med Biol. 2016;42: 1671–1680. doi: 10.1016/j.ultrasmedbio.2016.01.013 27126245

27. Nam SJ, Yoo J, Lee HS, Kim EK, Moon HJ, Yoon JH, et al. Quantitative Evaluation for Differentiating Malignant and Benign Thyroid Nodules Using Histogram Analysis of Grayscale Sonograms. J Ultrasound Med. 2016;35: 775–782. doi: 10.7863/ultra.15.05055 26969596

28. Kim SY, Lee E, Nam SJ, Kim EK, Moon HJ, Yoon JH, et al. Ultrasound texture analysis: Association with lymph node metastasis of papillary thyroid microcarcinoma. PLoS One. 2017;12: e0176103. doi: 10.1371/journal.pone.0176103 28419171

29. Liang J, Huang X, Hu H, Liu Y, Zhou Q, Cao Q, et al. Predicting Malignancy in Thyroid Nodules: Radiomics Score Versus 2017 American College of Radiology Thyroid Imaging, Reporting and Data System. Thyroid. 2018;28: 1024–1033. doi: 10.1089/thy.2017.0525 29897018

30. Lee SE, Han K, Kwak JY, Lee E, Kim EK. Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep. 2018;8: 13546. doi: 10.1038/s41598-018-31906-4 30202040

31. Suh CH, Baek JH, Choi YJ, Lee JH. Performance of CT in the Preoperative Diagnosis of Cervical Lymph Node Metastasis in Patients with Papillary Thyroid Cancer: A Systematic Review and Meta-Analysis. AJNR Am J Neuroradiol. 2017;38: 154–161. doi: 10.3174/ajnr.A4967 27789450

32. Lee JH, Baek JH, Kim JH, Shim WH, Chung SR, Choi YJ, et al. Deep Learning-Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study. Thyroid. 2018;28: 1332–1338. doi: 10.1089/thy.2018.0082 30132411.


Článek vyšel v časopise

PLOS One


2020 Číslo 1