Murine Surf4 is essential for early embryonic development


Autoři: Brian T. Emmer aff001;  Paul J. Lascuna aff002;  Vi T. Tang aff002;  Emilee N. Kotnik aff002;  Thomas L. Saunders aff001;  Rami Khoriaty aff001;  David Ginsburg aff001
Působiště autorů: Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan aff001;  Life Sciences Institute, University of Michigan, Ann Arbor, Michigan aff002;  Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan aff003;  Transgenic Animal Model Core Laboratory, University of Michigan, Ann Arbor, Michigan aff004;  University of Michigan Rogel Cancer Center, Ann Arbor, Michigan aff005;  Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan aff006;  Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan aff007;  Department of Human Genetics, University of Michigan, Ann Arbor, Michigan aff008;  Department of Pediatrics, University of Michigan, Ann Arbor, Michigan aff009;  Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan aff010
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227450

Souhrn

Newly synthesized proteins co-translationally inserted into the endoplasmic reticulum (ER) lumen may be recruited into anterograde transport vesicles by their association with specific cargo receptors. We recently identified a role for the cargo receptor SURF4 in facilitating the secretion of PCSK9 in cultured cells. To examine the function of SURF4 in vivo, we used CRISPR/Cas9-mediated gene editing to generate mice with germline loss-of-function mutations in Surf4. Heterozygous Surf4+/- mice exhibit grossly normal appearance, behavior, body weight, fecundity, and organ development, with no significant alterations in circulating plasma levels of PCSK9, apolipoprotein B, or total cholesterol, and a detectable accumulation of intrahepatic apoliprotein B. Homozygous Surf4-/- mice exhibit embryonic lethality, with complete loss of all Surf4-/- offspring between embryonic days 3.5 and 9.5. In contrast to the milder murine phenotypes associated with deficiency of known SURF4 cargoes, the embryonic lethality of Surf4-/- mice implies the existence of additional SURF4 cargoes or functions that are essential for murine early embryonic development.

Klíčová slova:

Alleles – Apolipoproteins – Endoplasmic reticulum – Cholesterol – Mice – Secretion – Variant genotypes – Cargo receptors


Zdroje

1. Zanetti G, Pahuja KB, Studer S, Shim S, Schekman R. COPII and the regulation of protein sorting in mammals. Nat Cell Biol. 2011;14(1):20–8. Epub 2011/12/24. doi: 10.1038/ncb2390 22193160.

2. Barlowe C, Helenius A. Cargo Capture and Bulk Flow in the Early Secretory Pathway. Annu Rev Cell Dev Biol. 2016;32:197–222. doi: 10.1146/annurev-cellbio-111315-125016 27298089.

3. Emmer BT, Hesketh GG, Kotnik E, Tang VT, Lascuna PJ, Xiang J, et al. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. Elife. 2018;7. Epub 2018/09/27. doi: 10.7554/eLife.38839 30251625; PubMed Central PMCID: PMC6156083.

4. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32(2):71–7. Epub 2007/01/12. doi: 10.1016/j.tibs.2006.12.008 17215125; PubMed Central PMCID: PMC2711871.

5. Yin Y, Garcia MR, Novak AJ, Saunders AM, Ank RS, Nam AS, et al. Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS Biol. 2018;16(8):e2005140. Epub 2018/08/08. doi: 10.1371/journal.pbio.2005140 30086131; PubMed Central PMCID: PMC6097701.

6. Saegusa K, Sato M, Morooka N, Hara T, Sato K. SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J Cell Biol. 2018;217(6):2073–85. Epub 2018/04/13. doi: 10.1083/jcb.201708115 29643117; PubMed Central PMCID: PMC5987718.

7. Williams T, Yon J, Huxley C, Fried M. The mouse surfeit locus contains a very tight cluster of four "housekeeping" genes that is conserved through evolution. Proc Natl Acad Sci U S A. 1988;85(10):3527–30. Epub 1988/05/01. doi: 10.1073/pnas.85.10.3527 2453062; PubMed Central PMCID: PMC280245.

8. Huxley C, Fried M. The mouse surfeit locus contains a cluster of six genes associated with four CpG-rich islands in 32 kilobases of genomic DNA. Mol Cell Biol. 1990;10(2):605–14. Epub 1990/02/01. doi: 10.1128/mcb.10.2.605 2300057; PubMed Central PMCID: PMC360851.

9. Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, et al. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife. 2013;2:e00444. Epub 2013/04/13. doi: 10.7554/eLife.00444 23580231; PubMed Central PMCID: PMC3622177.

10. Merte J, Jensen D, Wright K, Sarsfield S, Wang Y, Schekman R, et al. Sec24b selectively sorts Vangl2 to regulate planar cell polarity during neural tube closure. Nat Cell Biol. 2010;12(1):41–6; sup pp 1–8. Epub 2009/12/08. doi: 10.1038/ncb2002 19966784; PubMed Central PMCID: PMC2823131.

11. Adams EJ, Chen XW, O'Shea KS, Ginsburg D. Mammalian COPII coat component SEC24C is required for embryonic development in mice. J Biol Chem. 2014;289(30):20858–70. Epub 2014/05/31. doi: 10.1074/jbc.M114.566687 24876386; PubMed Central PMCID: PMC4110293.

12. Baines AC, Adams EJ, Zhang B, Ginsburg D. Disruption of the Sec24d gene results in early embryonic lethality in the mouse. PLoS One. 2013;8(4):e61114. Epub 2013/04/19. doi: 10.1371/journal.pone.0061114 23596517; PubMed Central PMCID: PMC3626607.

13. Tao J, Zhu M, Wang H, Afelik S, Vasievich MP, Chen XW, et al. SEC23B is required for the maintenance of murine professional secretory tissues. Proc Natl Acad Sci U S A. 2012;109(29):E2001–9. Epub 2012/06/30. doi: 10.1073/pnas.1209207109 22745161; PubMed Central PMCID: PMC3406820.

14. Zhu M, Tao J, Vasievich MP, Wei W, Zhu G, Khoriaty RN, et al. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice. Sci Rep. 2015;5:15471. Epub 2015/10/27. doi: 10.1038/srep15471 26494538; PubMed Central PMCID: PMC4616029.

15. Khoriaty R, Everett L, Chase J, Zhu G, Hoenerhoff M, McKnight B, et al. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice. Sci Rep. 2016;6:27802. Epub 2016/06/15. doi: 10.1038/srep27802 27297878; PubMed Central PMCID: PMC4906273.

16. Khoriaty R, Hesketh GG, Bernard A, Weyand AC, Mellacheruvu D, Zhu G, et al. Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A. 2018;115(33):E7748–E57. Epub 2018/08/02. doi: 10.1073/pnas.1805784115 30065114; PubMed Central PMCID: PMC6099849.

17. Khoriaty R, Vasievich MP, Jones M, Everett L, Chase J, Tao J, et al. Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B. Mol Cell Biol. 2014;34(19):3721–34. Epub 2014/07/30. doi: 10.1128/MCB.00287-14 25071156; PubMed Central PMCID: PMC4187739.

18. Khoriaty R, Vogel N, Hoenerhoff MJ, Sans MD, Zhu G, Everett L, et al. SEC23B is required for pancreatic acinar cell function in adult mice. Mol Biol Cell. 2017;28(15):2146–54. Epub 2017/05/26. doi: 10.1091/mbc.E17-01-0001 28539403; PubMed Central PMCID: PMC5509426.

19. Nichols WC, Seligsohn U, Zivelin A, Terry VH, Hertel CE, Wheatley MA, et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell. 1998;93(1):61–70. Epub 1998/04/18. doi: 10.1016/s0092-8674(00)81146-0 9546392.

20. Zhang B, Cunningham MA, Nichols WC, Bernat JA, Seligsohn U, Pipe SW, et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet. 2003;34(2):220–5. Epub 2003/04/30. doi: 10.1038/ng1153 12717434.

21. Zhang B, Zheng C, Zhu M, Tao J, Vasievich MP, Baines A, et al. Mice deficient in LMAN1 exhibit FV and FVIII deficiencies and liver accumulation of alpha1-antitrypsin. Blood. 2011;118(12):3384–91. Epub 2011/07/29. doi: 10.1182/blood-2011-05-352815 21795745; PubMed Central PMCID: PMC3179404.

22. Zhu M, Zheng C, Wei W, Everett L, Ginsburg D, Zhang B. Analysis of MCFD2- and LMAN1-deficient mice demonstrates distinct functions in vivo. Blood Adv. 2018;2(9):1014–21. Epub 2018/05/08. doi: 10.1182/bloodadvances.2018018317 29735583; PubMed Central PMCID: PMC5942004.

23. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. Epub 2016/08/19. doi: 10.1038/nature19057 27535533; PubMed Central PMCID: PMC5018207.

24. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83. Epub 2013/10/08. doi: 10.1038/ng.2797 24097068; PubMed Central PMCID: PMC3838666.

25. Hunt SE, McLaren W, Gil L, Thormann A, Schuilenburg H, Sheppard D, et al. Ensembl variation resources. Database (Oxford). 2018;2018. Epub 2018/12/24. doi: 10.1093/database/bay119 30576484; PubMed Central PMCID: PMC6310513.

26. Westrick RJ, Mohlke KL, Korepta LM, Yang AY, Zhu G, Manning SL, et al. Spontaneous Irs1 passenger mutation linked to a gene-targeted SerpinB2 allele. Proc Natl Acad Sci U S A. 2010;107(39):16904–9. Epub 2010/09/15. doi: 10.1073/pnas.1012050107 20837540; PubMed Central PMCID: PMC2947888.

27. Otte S, Belden WJ, Heidtman M, Liu J, Jensen ON, Barlowe C. Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J Cell Biol. 2001;152(3):503–18. Epub 2001/02/07. doi: 10.1083/jcb.152.3.503 11157978; PubMed Central PMCID: PMC2195992.

28. Caldwell SR, Hill KJ, Cooper AA. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem. 2001;276(26):23296–303. Epub 2001/04/24. doi: 10.1074/jbc.M102962200 11316816.

29. Rashid S, Curtis DE, Garuti R, Anderson NN, Bashmakov Y, Ho YK, et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A. 2005;102(15):5374–9. doi: 10.1073/pnas.0501652102 15805190; PubMed Central PMCID: PMC556275.

30. Farese RV Jr., Ruland SL, Flynn LM, Stokowski RP, Young SG. Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci U S A. 1995;92(5):1774–8. Epub 1995/02/28. doi: 10.1073/pnas.92.5.1774 7878058; PubMed Central PMCID: PMC42602.

31. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537(7621):508–14. Epub 2016/09/15. doi: 10.1038/nature19356 27626380; PubMed Central PMCID: PMC5295821.

32. Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2001;276(34):31871–5. Epub 2001/06/15. doi: 10.1074/jbc.M104624200 11406633.

33. Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, et al. Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem. 2003;278(27):24874–80. Epub 2003/05/02. doi: 10.1074/jbc.M303908200 12721295.

34. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23. Epub 2013/01/05. doi: 10.1126/science.1231143 23287718; PubMed Central PMCID: PMC3795411.

35. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. Epub 2013/01/05. doi: 10.1126/science.1232033 23287722; PubMed Central PMCID: PMC3712628.

36. Popp MW, Maquat LE. Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine. Cell. 2016;165(6):1319–22. Epub 2016/06/04. doi: 10.1016/j.cell.2016.05.053 27259145; PubMed Central PMCID: PMC4924582.

37. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):148. Epub 2016/07/07. doi: 10.1186/s13059-016-1012-2 27380939; PubMed Central PMCID: PMC4934014.

38. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. Epub 2013/10/26. doi: 10.1038/nprot.2013.143 24157548; PubMed Central PMCID: PMC3969860.

39. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods. 2009;6(7):493–5. Epub 2009/06/16. doi: 10.1038/nmeth.1342 19525957; PubMed Central PMCID: PMC3555078.

40. McBurney MW, Fournier S, Jardine K, Sutherland L. Intragenic regions of the murine Pgk-1 locus enhance integration of transfected DNAs into genomes of embryonal carcinoma cells. Somat Cell Mol Genet. 1994;20(6):515–28. Epub 1994/11/01. doi: 10.1007/bf02255842 7892649.

41. Hughes ED, Saunders TL. In: Pease S, Saunders TL, editors. Advanced Protocols for Animal Transgenesis: An ISTT Manual: Springer-Verlag, Berlin. p. 291–325.

42. Sakurai T, Watanabe S, Kamiyoshi A, Sato M, Shindo T. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice. BMC Biotechnol. 2014;14:69. Epub 2014/07/22. doi: 10.1186/1472-6750-14-69 25042988; PubMed Central PMCID: PMC4118159.

43. Mashiko D, Fujihara Y, Satouh Y, Miyata H, Isotani A, Ikawa M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013;3:3355. Epub 2013/11/29. doi: 10.1038/srep03355 24284873; PubMed Central PMCID: PMC3842082.

44. Becker K, Jerchow B. Advanced Protocols for Animal Transgenesis: An ISTT Manual. In: Pease S, Saunders TL, editors. Berlin: Springer-Verlag; 2011. p. 99–116.

45. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168. Epub 2014/10/11. doi: 10.1093/nar/gku936 25300484; PubMed Central PMCID: PMC4267669.

46. Ling D, Salvaterra PM. Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS One. 2011;6(3):e17762. Epub 2011/03/23. doi: 10.1371/journal.pone.0017762 21423626; PubMed Central PMCID: PMC3058000.

47. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. doi: 10.1038/nmeth.2089 22930834.

48. Takeo T, Nakagata N. Immunotherapy using inhibin antiserum enhanced the efficacy of equine chorionic gonadotropin on superovulation in major inbred and outbred mice strains. Theriogenology. 2016;86(5):1341–6. Epub 2016/06/01. doi: 10.1016/j.theriogenology.2016.04.076 27242176.

49. Ostermeier GC, Wiles MV, Farley JS, Taft RA. Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS One. 2008;3(7):e2792. Epub 2008/07/31. doi: 10.1371/journal.pone.0002792 18665210; PubMed Central PMCID: PMC2453316.


Článek vyšel v časopise

PLOS One


2020 Číslo 1