Assessment of dynamic cerebral autoregulation in humans: Is reproducibility dependent on blood pressure variability?


Autoři: Jan Willem Elting aff001;  Marit L. Sanders aff002;  Ronney B. Panerai aff003;  Marcel Aries aff004;  Edson Bor-Seng-Shu aff005;  Alexander Caicedo aff006;  Max Chacon aff007;  Erik D. Gommer aff008;  Sabine Van Huffel aff009;  José L. Jara aff007;  Kyriaki Kostoglou aff010;  Adam Mahdi aff011;  Vasilis Z. Marmarelis aff012;  Georgios D. Mitsis aff013;  Martin Müller aff014;  Dragana Nikolic aff015;  Ricardo C. Nogueira aff005;  Stephen J. Payne aff011;  Corina Puppo aff016;  Dae C. Shin aff012;  David M. Simpson aff015;  Takashi Tarumi aff017;  Bernardo Yelicich aff016;  Rong Zhang aff017;  Jurgen A. H. R. Claassen aff001
Působiště autorů: Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands aff001;  Department of Geriatric Medicine, Radboudumc Alzheimer Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands aff002;  Department of Cardiovascular Sciences and Leicester Biomedical Research Centre in Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom aff003;  Department of Intensive Care, University of Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands aff004;  Department of Neurology, Hospital das Clinicas University of Sao Paulo, Sao Paulo, Brazil aff005;  Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia aff006;  Departemento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago de Chile, Chile aff007;  Department of Clinical Neurophysiology, University of Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands aff008;  Department of Electronic Engineering, Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Katholieke Universiteit Leuven, Leuven, Belgium aff009;  Department of Electrical, Computer and Software Engineering, McGill University, Montreal, Canada aff010;  Department of Engineering Science, University of Oxford, Oxford, United Kingdom aff011;  Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America aff012;  Department of Bioengineering, McGill University, Montreal, Canada aff013;  Department of Neurology, Luzerner Kantonsspital, Luzern, Switzerland aff014;  Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom aff015;  Departamento de Emergencia, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay aff016;  The Institute for Exercise and Environmental Medicine, Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America aff017
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227651

Souhrn

We tested the influence of blood pressure variability on the reproducibility of dynamic cerebral autoregulation (DCA) estimates. Data were analyzed from the 2nd CARNet bootstrap initiative, where mean arterial blood pressure (MABP), cerebral blood flow velocity (CBFV) and end tidal CO2 were measured twice in 75 healthy subjects. DCA was analyzed by 14 different centers with a variety of different analysis methods. Intraclass Correlation (ICC) values increased significantly when subjects with low power spectral density MABP (PSD-MABP) values were removed from the analysis for all gain, phase and autoregulation index (ARI) parameters. Gain in the low frequency band (LF) had the highest ICC, followed by phase LF and gain in the very low frequency band. No significant differences were found between analysis methods for gain parameters, but for phase and ARI parameters, significant differences between the analysis methods were found. Alternatively, the Spearman-Brown prediction formula indicated that prolongation of the measurement duration up to 35 minutes may be needed to achieve good reproducibility for some DCA parameters. We conclude that poor DCA reproducibility (ICC<0.4) can improve to good (ICC > 0.6) values when cases with low PSD-MABP are removed, and probably also when measurement duration is increased.

Klíčová slova:

Bioassays and physiological analysis – Blood flow – Blood pressure – Cerebral blood flow assay – Hypertension – Monte Carlo method – Reproducibility – Reproductive physiology


Zdroje

1. Panerai RB. Transcranial Doppler for evaluation of cerebral autoregulation. Clin Auton Res. 2009;19: 197–211. doi: 10.1007/s10286-009-0011-8 19370374

2. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20: 45–52. doi: 10.1161/01.str.20.1.45 2492126

3. Aries MJH, Elting JW, De Keyser J, Kremer BPH, Vroomen PCAJ. Cerebral autoregulation in stroke: A review of transcranial doppler studies. Stroke. 2010;41: 2697–2704. doi: 10.1161/STROKEAHA.110.594168 20930158

4. Reinhard M, Roth M, Guschlbauer B, Harloff A, Timmer J, Czosnyka M, et al. Dynamic cerebral autoregulation in acute ischemic stroke assessed from spontaneous blood pressure fluctuations. Stroke. 2005;36: 1684–1689. doi: 10.1161/01.STR.0000173183.36331.ee 16020768

5. Aries MJH, Van Der Naalt J, van den Bergh WB, van Dijk M, Elting JWJ, Czosnyka M, et al. Neuromonitoring of patients with severe traumatic brain injury at the bedside. Netherlands J Crit Care. 2015;20: 6–12.

6. Aries MJH, Wesselink R, Elting JWJ, Donnelly J, Czosnyka M, Ercole A, et al. Enhanced Visualization of Optimal Cerebral Perfusion Pressure over Time to Support Clinical Decision Making. Crit Care Med. 2016;44: e996–e999. doi: 10.1097/CCM.0000000000001816 27270178

7. Mitsis GD, Poulin MJ, Robbins PA, Marmarelis VZ. Nonlinear modeling of the dynamic effects of arterial pressure and CO 2 variations on cerebral blood flow in healthy humans. IEEE Trans Biomed Eng. 2004;51: 1932–1943. doi: 10.1109/TBME.2004.834272 15536895

8. Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH. Effect of CO 2 on dynamic cerebral autoregulation measurement. Physiol Meas. 1999;20: 265–275. doi: 10.1088/0967-3334/20/3/304 10475580

9. van Lieshout JJ, Secher NH. Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Point: Sympathetic activity does influence cerebral blood flow. J Appl Physiol. 2008;105: 1364–6. doi: 10.1152/japplphysiol.90597.2008 18583376

10. Panerai RB. Nonstationarity of dynamic cerebral autoregulation. Med Eng Phys. 2014;36: 576–584. doi: 10.1016/j.medengphy.2013.09.004 24113077

11. Marmarelis VZ, Shin DC, Orme M, Zhang R. Time-varying modeling of cerebral hemodynamics. IEEE Trans Biomed Eng. 2014;61: 694–704. doi: 10.1109/TBME.2013.2287120 24184697

12. Claassen JA, Meel-Van Den Abeelen AS, Simpson DM, Panerai RB, Alexander Caicedo Dorado, Mitsis GD, et al. Transfer function analysis of dynamic cerebral autoregulation: A white paper from the International Cerebral Autoregulation Research Network. J Cereb Blood Flow Metab. 2015;36: 665–680. doi: 10.1177/0271678X15626425 26782760

13. Peng T, Rowley AB, Ainslie PN, Poulin MJ, Payne SJ. Multivariate system identification for cerebral autoregulation. Ann Biomed Eng. 2008;36: 308–320. doi: 10.1007/s10439-007-9412-9 18066666

14. Marmarelis VZ, Mitsis GD, Shin DC, Zhang R. Multiple-input nonlinear modelling of cerebral haemodynamics using spontaneous arterial blood pressure, end-tidal CO 2 and heart rate measurements. Philos Trans R Soc A Math Phys Eng Sci. 2016;374. doi: 10.1098/rsta.2015.0180 27044989

15. Mitsis GD, Poulin MJ, Robbins PA, Marmarelis VZ. Nonlinear modeling of the dynamic effects of arterial pressure and CO 2 variations on cerebral blood flow in healthy humans. IEEE Trans Biomed Eng. 2004;51: 1932–1943. doi: 10.1109/TBME.2004.834272 15536895

16. Novak V, Yang ACC, Lepicovsky L, Goldberger AL, Lipsitz LA, Peng CK. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension. Biomed Eng Online. 2004;3. doi: 10.1186/1475-925X-3-3

17. Lo MT, Hu K, Liu Y, Peng CK, Novak V. Multimodal pressure-flow analysis: Application of Hilbert Huang transform in cerebral blood flow regulation. EURASIP J Adv Signal Process. 2008;2008. doi: 10.1155/2008/785243 18725996

18. System R.B. P. identification of human cerebral blood flow regulatory mechanisms. Cardiovasc Eng. 2004;4: 59–71. Available: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L39127634%5Cnhttp://dx.doi.org/10.1023/B:CARE.0000025123.43747.e1%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=15678822&id=doi:10.1023%2FB%3ACARE.0000025123.43747.e1&atitle=Sy

19. Panerai RB, Eames PJ, Potter JF. Variability of time-domain indices of dynamic cerebral autoregulation. Physiological Measurement. 2003. pp. 367–381. doi: 10.1088/0967-3334/24/2/312 12812422

20. Kostoglou K, Debert CT, Poulin MJ, Mitsis GD. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia. Med Eng Phys. 2014;36: 592–600. doi: 10.1016/j.medengphy.2013.10.011 24291338

21. Sanders ML, Claassen JAHR, Aries M, Bor-Seng-Shu E, Caicedo A, Chacon M, et al. Reproducibility of dynamic cerebral autoregulation parameters: A multi-centre, multi-method study. Physiol Meas. 2018;39. doi: 10.1088/1361-6579/aae9fd 30523976

22. Sanders ML, Claassen JAHR, Aries M, Bor-Seng-Shu E, Caicedo A, Chacon M, et al. Dynamic cerebral autoregulation reproducibility is affected by physiological variability. Front Physiol. 2019;in press.

23. Reinhard M, Müller T, Guschlbauer B, Timmer J, Hetzel a. Transfer function analysis for clinical evaluation of dynamic cerebral autoregulation—a comparison between spontaneous and respiratory-induced oscillations. Physiol Meas. 2003;24: 27–43. doi: 10.1088/0967-3334/24/1/303 12636185

24. Liu J, Simpson DM, Allen R. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation. Physiol Meas. 2005;26: 725–741. doi: 10.1088/0967-3334/26/5/012 16088064

25. Elting JW, Aries MJH, van der Hoeven JH, Vroomen PCAJ, Maurits NM. Reproducibility and variability of dynamic cerebral autoregulation during passive cyclic leg raising. Med Eng Phys. 2014;36: 585–591. doi: 10.1016/j.medengphy.2013.09.012 24176834

26. Claassen JAHR, Levine BD, Zhang R. Dynamic cerebral autoregulation during repeated squat-stand maneuvers. J Appl Physiol. 2008;106: 153–160. doi: 10.1152/japplphysiol.90822.2008 18974368

27. Birch AA, Neil-Dwyer G, Murrills AJ. The repeatability of cerebral autoregulation assessment using sinusoidal lower body negative pressure. Physiol Meas. 2002;23: 73–83. doi: 10.1088/0967-3334/23/1/307 11876243

28. Brodie FG, Atkins ER, Robinson TG, Panerai RB. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure. Clin Sci. 2009;116: 513–520. doi: 10.1042/CS20080236 18939945

29. Box GEP, Cox DR. An Analysis of Transformations. J R Stat Soc Ser B. 1964;26: 211–243. doi: 10.1111/j.2517-6161.1964.tb00553.x

30. McCrary S. Implementing a Monte Carlo Simulation: Correlation, Skew, and Kurtosis. In: Ssrn: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2665147 [Internet]. 2015 pp. 1–20. doi: 10.2139/ssrn.2665147

31. de Vet HCW, Mokkink LB, Mosmuller DG, Terwee CB. Spearman–Brown prophecy formula and Cronbach’s alpha: different faces of reliability and opportunities for new applications. J Clin Epidemiol. Elsevier Inc; 2017;85: 45–49. doi: 10.1016/j.jclinepi.2017.01.013 28342902

32. Cicchetti D V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol Assess. 1994;6: 284–290. doi: 10.1037/1040-3590.6.4.284

33. Simpson D, Claassen J. CrossTalk opposing view: dynamic cerebral autoregulation should be quantified using induced (rather than spontaneous) blood pressure fluctuations. J Physiol. 2018;596: 7–9. doi: 10.1113/JP273900 29207208

34. Tzeng YC, Panerai RB. CrossTalk proposal: dynamic cerebral autoregulation should be quantified using spontaneous blood pressure fluctuations. J Physiol. 2018;596: 3–5. doi: 10.1113/JP273899 29207213

35. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF. A framework for the analysis of mixed time series/point process data-Theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol. 1995;64: 237–278. doi: 10.1016/s0079-6107(96)00009-0 8987386

36. Bendat J, Piersol A. Random Data Analysis and Measurement Procedures. 4th ed. Measurement Science and Technology. John Wiley And Sons Ltd; 2010.

37. Zhang R, Zuckerman JH, Levine BD. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans. Am J Physiol Circ Physiol. 2017;278: H1848–H1855. doi: 10.1152/ajpheart.2000.278.6.h1848 10843881

38. Carey BJ, Eames PJ, Blake MJ, Panerai RB, Potter JF. Dynamic cerebral autoregulation is unaffected by aging. Stroke. 2000;31: 2895–2900. doi: 10.1161/01.str.31.12.2895 11108745


Článek vyšel v časopise

PLOS One


2020 Číslo 1