Diversity of Mycobacteriaceae from aquatic environment at the São Paulo Zoological Park Foundation in Brazil


Autoři: Camila Lopes Romagnoli aff001;  Katia Cristina Machado Pellegrino aff002;  Natalia Maria Silva aff001;  Urze Adomaitis Brianesi aff001;  Sylvia Cardoso Leão aff001;  Michelle Christiane da Silva Rabello aff003;  Cristina Viana-Niero aff001
Působiště autorů: Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, SP, Brazil aff001;  Departamento de Ecologia e Biologia Evolutiva da Universidade Federal de São Paulo, Diadema, SP, Brazil aff002;  Departamento de Imunologia do Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brazil aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227759

Souhrn

We investigated the species diversity of Mycobacteriaceae in surface water samples from six environments at the zoological park in São Paulo, Brazil. Three hundred and eighty isolates were cultivated and identified by phenotypic characteristics (growth rate and pigmentation) and sequencing of hsp65, rpoB and 16S rRNA genes. The results revealed that almost 48% of the isolates could be identified at the species level; about 50% were classified at the genus level, and only less than 2% of the isolates showed an inconclusive identification. The isolates classified at the genus level and not identified were then evaluated by phylogenetic analyses using the same three concatenated target genes. The results allowed us to identify at the genus level some isolates that previously had inconclusive identification, and they also suggested the presence of putative candidate species within the sample, demonstrating that this zoological park is an important source of diversity.

Klíčová slova:

Gene sequencing – Mycobacteria – Phylogenetic analysis – Ribosomal RNA – Sequence databases – Sewage – Surface water – Sewage treatment


Zdroje

1. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol. 2018;9: 1–41. doi: 10.3389/fmicb.2018.00001

2. Oren A, Garrity G. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. Microbiology Society; 2018;68: 1411–1417. doi: 10.1099/ijsem.0.002711 31825780

3. Makovcova J, Slany M, Babak V, Slana I, Kralik P. The water environment as a source of potentially pathogenic mycobacteria. J Water Health. 2014;12: 254–263. doi: 10.2166/wh.2013.102 24937219

4. Makovcova J, Babak V, Slany M, Slana I. Comparison of methods for the isolation of mycobacteria from water treatment plant sludge. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2015;107: 1165–1179. doi: 10.1007/s10482-015-0408-4 25724128

5. Falkinham JO. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. Elsevier Inc; 2015;36: 35–41. doi: 10.1016/j.ccm.2014.10.003 25676517

6. Amha YM, Anwar MZ, Kumaraswamy R, Henschel A, Ahmad F. Mycobacteria in Municipal Wastewater Treatment and Reuse: Microbial Diversity for Screening the Occurrence of Clinically and Environmentally Relevant Species in Arid Regions. Environ Sci Technol. 2017;51: 3048–3056. doi: 10.1021/acs.est.6b05580 28139909

7. Haig S-J, Kotlarz N, LiPuma JJ, Raskin L. A High-Throughput Approach for Identification of Nontuberculous Mycobacteria in Drinking Water Reveals Relationship between Water Age and Mycobacterium avium. Bailey MJ, editor. MBio. 2018;9. doi: 10.1128/mbio.02354-17 29440575

8. Heitkamp MA, Cerniglia CE. Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol. American Society for Microbiology; 1988;54: 1612–4. 3415226

9. Heitkamp MA, Franklin W, Cerniglia CE. Microbial metabolism of polycyclic aromatic hydrocarbons: Isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol. 1988;54: 2549–2555. 3202633

10. Hennessee CT, Seo JS, Alvarez AM, Li QX. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int J Syst Evol Microbiol. 2009;59: 378–387. doi: 10.1099/ijs.0.65827-0 19196782

11. Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, et al. Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng. 2014;26: 100–110. doi: 10.1016/j.ymben.2014.09.005 25305469

12. Wee WY, Tan TK, Jakubovics NS, Choo SW. Whole-genome sequencing and comparative analysis of Mycobacterium brisbanense reveals a possible soil origin and capability in fertiliser synthesis. PLoS One. 2016;11: 1–15. doi: 10.1371/journal.pone.0152682 27031249

13. Lima-Junior JD, Viana-Niero C, Conde Oliveira D V, Machado GE, Rabello MC da S, Martins-Junior J, et al. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiol. BioMed Central; 2016;16: 111. doi: 10.1186/s12866-016-0734-3 27316672

14. Bicudo D de C, Forti MC, Bicudo CE de M. Parque Estadual das Fontes do Ipiranga (PEFI): unidade de conservação que resiste à urbanização de São Paulo. Parque Estadual das Fontes do Ipiranga (PEFI): unidade de conservação que resiste à urbanização de São Paulo. SMA; 2002.

15. Rice EW, Bridgewater L, American Public Health Association., American Water Works Association., Water Environment Federation. Standard methods for the examination of water and wastewater. American Public Health Association; 2012.

16. Gentil CR, Tucci A, Célia E, Sant ‘anna L. Dinâmica da comunidade fitoplanctônica e aspectos sanitários de um lago urbano eutrófico em São Paulo, SP. Hoehnea. 2008;35: 265–280.

17. Sant´Anna C, Tucci A, Azevedo M, Melcher S, Werner V, Malone C, et al. Atlas de cianobactérias e microalgas de águas continentais brasileiras. Inst Botânica-Núcleo Pesqui em Ficologia. 2012; 175. doi: 10.13140/2.1.4417.1208

18. Carvalho M do C, Agujaro LF, Pires DA, Picoli C. Manual de Cianobactéria Planctônicas:Legislação, Orientações para o Monitoramento e Aspectos Ambientais [Internet]. Cetesb. CETESB; 2013. Available: https://cetesb.sp.gov.br/laboratorios/wp-content/uploads/sites/24/2015/01/manual-cianobacterias-2013.pdf

19. Radomski N, Cambau E, Moulin L, Haenn S, Moilleron R, Lucas FS. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Appl Environ Microbiol. American Society for Microbiology; 2010;76: 3514–3520. doi: 10.1128/AEM.02659-09 20363776

20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173: 697–703. doi: 10.1128/jb.173.2.697-703.1991 1987160

21. Leão SC, Martin A, Mejia M. GI, Palomino juan C, Robledo R. J, Telles MA da S, et al. Practical Handbook for the Phenotypic and Genotypic Identification of Mycobacteria. 2004.

22. Adékambi T, Colson P, Drancourt M. rpoB-Based Identification of Nonpigmented and Late-Pigmenting Rapidly Growing Mycobacteria. J Clin Microbiol. 2003;41: 5699–5708. doi: 10.1128/JCM.41.12.5699-5708.2003 14662964

23. Adékambi T, Drancourt M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol. 2004;54: 2095–2105. doi: 10.1099/ijs.0.63094-0 15545441

24. Selvaraju SB, Khan IUH, Yadav JS. A new method for species identification and differentiation of Mycobacterium chelonae complex based on amplified hsp65 restriction analysis (AHSPRA). Mol Cell Probes. 2005;19: 93–99. doi: 10.1016/j.mcp.2004.09.007 15680210

25. Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. American Society for Microbiology (ASM); 1993;31: 175–178. Available: http://www.ncbi.nlm.nih.gov/pubmed/8381805 8381805

26. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Kim SJ, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol. 1999;37: 1714–1720. Available: http://www.ncbi.nlm.nih.gov/pubmed/10325313 10325313

27. McNabb A, Eisler D, Adie K, Amos M, Rodrigues M, Stephens G, et al. Assessment of Partial Sequencing of the 65-Kilodalton Heat Shock Protein Gene (hsp65) for Routine Identification of Mycobacterium Species Isolated from Clinical Sources. J Clin Microbiol. 2004;42: 3000–3011. doi: 10.1128/JCM.42.7.3000-3011.2004 15243051

28. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol. 2000;38: 3623–3630. Available: http://www.ncbi.nlm.nih.gov/pubmed/11015374 11015374

29. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. Oxford University Press; 1994;22: 4673–80. doi: 10.1093/nar/22.22.4673 7984417

30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33: 1870–4. doi: 10.1093/molbev/msw054 27004904

31. Posada D. jModelTest: Phylogenetic Model Averaging. Mol Biol Evol. 2008;25. doi: 10.1093/molbev/msn083 18397919

32. Swofford DL. PAUP*: phylogenetic analysis using parsimony (and other methods) Sinauer. Sunderland, Massachusetts, USA. 1998;

33. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. doi: 10.1093/bioinformatics/17.8.754 11524383

34. Rambaut A, Drummond AJ. Tracer v1.4.1. [Internet]. 2007. Available: http://tree.bio.ed.ac.uk/software/tracer/

35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39: 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x 28561359

36. Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. Narnia; 1993;42: 182–192. doi: 10.1093/sysbio/42.2.182

37. Stout LM, Blake RE, Greenwood JP, Martini AM, Rose EC. Microbial diversity of boron-rich volcanic hot springs of St. Lucia, Lesser Antilles. FEMS Microbiol Ecol. 2009;70: 402–412. doi: 10.1111/j.1574-6941.2009.00780.x 19796138

38. Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, Paulin L, et al. Mycobacteria in Water and Loose Deposits of Drinking Water Distribution Systems in Finland. Appl Environ Microbiol. 2004;70: 1973–1981. doi: 10.1128/AEM.70.4.1973-1981.2004 15066787

39. Torvinen E, Lehtola MJ, Martikainen PJ, Miettinen IT. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Appl Environ Microbiol. 2007;73: 6201–6207. doi: 10.1128/AEM.00828-07 17675427

40. Kormas KA, Neofitou C, Pachiadaki M, Koufostathi E. Changes of the bacterial assemblages throughout an urban drinking water distribution system. Environ Monit Assess. 2010;165: 27–38. doi: 10.1007/s10661-009-0924-7 19404754

41. Roguet A, Therial C, Saad M, Boudahmane L, Moulin L, Lucas FS. High mycobacterial diversity in recreational lakes. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. Springer International Publishing; 2016;109: 619–631. doi: 10.1007/s10482-016-0665-x 26873594

42. Stackebrandt E, Frederiksen E, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. Microbiology Society; 2002;52: 1043–1047. doi: 10.1099/00207713-52-3-1043 12054223

43. Devulder G, de Montclos MP, Flandrois JP. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol. 2005;55: 293–302. doi: 10.1099/ijs.0.63222-0 15653890

44. Mignard S, Flandrois JP. A seven-gene, multilocus, genus-wide approach to the phylogeny of mycobacteria using supertrees. Int J Syst Evol Microbiol. 2008;58: 1432–1441. doi: 10.1099/ijs.0.65658-0 18523191

45. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56: 19–25. doi: 10.1016/j.meegid.2017.10.013 29030295

46. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, et al. Re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3: 733–739. doi: 10.1038/nrmicro1236 16138101

47. Teniola OD, Addo PA, Brost IM, Färber P, Jany KD, Alberts JF, et al. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. Int J Food Microbiol. 2005;105: 111–117. doi: 10.1016/j.ijfoodmicro.2005.05.004 16061299

48. Kim SJ, Kweon O, Sutherland JB, Kim HL, Jones RC, Burback BL, et al. Dynamic response of Mycobacterium vanbaalenii PYR-1 to BP deepwater horizon crude oil. Appl Environ Microbiol. American Society for Microbiology; 2015;81: 4263–4276. doi: 10.1128/AEM.00730-15 25888169

49. Rodríguez-García A, Fernández-Alegre E, Morales A, Sola-Landa A, Lorraine J, Macdonald S, et al. Complete genome sequence of “Mycobacterium neoaurum” NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol. 2016;224: 64–5. doi: 10.1016/j.jbiotec.2016.03.021 26988397

50. Brown-Elliott BA, Wallace RJ, Petti CA, Mann LB, McGlasson M, Chihara S, et al. Mycobacterium neoaurum and Mycobacterium bacteremicum sp. nov. as causes of mycobacteremia. J Clin Microbiol. 2010;48: 4377–4385. doi: 10.1128/JCM.00853-10 20881180

51. Kim BJ, Hong SH, Kook YH, Kim BJ. Molecular Evidence of Lateral Gene Transfer in rpoB Gene of Mycobacterium yongonense Strains via Multilocus Sequence Analysis. Herrmann JL, editor. PLoS One. 2013;8: e51846. doi: 10.1371/journal.pone.0051846 23382812

52. Salah BI, Cayrou C, Raoult D, Drancourt M. Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov.,members of the Mycobacterium avium complex. Int J Syst Evol Microbiol. 2009;59: 2803–2808. doi: 10.1099/ijs.0.010637-0 19628609

53. Nogueira CL, Simmon KE, Chimara E, Cnockaert M, Carlos Palomino J, Martin A, et al. Mycobacterium franklinii sp. nov., a species closely related to members of the Mycobacterium chelonae–Mycobacterium abscessus group. Int J Syst Evol Microbiol. Microbiology Society; 2015;65: 2148–2153. doi: 10.1099/ijs.0.000234 25858242

54. Nogueira CL, Whipps CM, Matsumoto CK, Chimara E, Droz S, Tortoli E, et al. Mycobacterium saopaulense sp. nov., a rapidly growing mycobacterium closely related to members of the Mycobacterium chelonae–Mycobacterium abscessus group. Int J Syst Evol Microbiol. 2015;65: 4403–4409. doi: 10.1099/ijsem.0.000590 26358475

55. Wielen V der, J. PWJ, Heijnen L, van der Kooij D. Pyrosequence Analysis of the hsp65 Genes of Nontuberculous Mycobacterium Communities in Unchlorinated Drinking Water in the Netherlands. Appl Environ Microbiol. 2013;79: 6160–6166. doi: 10.1128/AEM.01591-13 23913420

56. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. Elsevier; 2012;18: 1185–1193. doi: 10.1111/1469-0691.12023 23033984

57. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. Nature Publishing Group; 2016;1: 16203. doi: 10.1038/nmicrobiol.2016.203 27819657

58. Amrane S, Hocquart M, Afouda P, Kuete E, Pham T-P-T, Dione N, et al. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostridium difficile infection. Sci Rep. Nature Publishing Group; 2019;9: 12807. doi: 10.1038/s41598-019-49189-8 31488869


Článek vyšel v časopise

PLOS One


2020 Číslo 1