Root treatment with oxathiapiprolin, benthiavalicarb or their mixture provides prolonged systemic protection against oomycete foliar pathogens


Autoři: Yigal Cohen aff001
Působiště autorů: The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227556

Souhrn

Oxathiapiprolin is a fungicide effective against downy mildews of cucumber (Pseudoperonospora cubensis) and basil (Peronospora belbahrii) and late blight of tomato (Phytophthora infestans). To avoid fungicide resistance, it is recommended to apply oxathiapiprolin as a mixture with a partner fungicide that have a different mode of action. Here it is shown that a single application of oxathiapiprolin, benthiavalicarb, or their mixture (3+7, w/w) to the root of nursery plants grown in multi-cell trays provided prolonged systemic protection against late blight and downy mildews in growth chambers and in field tests. Soil application of 1mg active ingredient per plant provided durable protection of up to four weeks in tomato against late blight, cucumber against downy mildew and basil against downy mildew. Not only did the mixture of oxathiapiprolin and benthiavalicarb provide excellent systemic control of these diseases but also mutual protection against resistance towards both oxathiapiprolin and benthiavalicarb.

Klíčová slova:

Cucumber – Downy mildew – Fungal diseases – Fungicides – Leaves – Plant fungal pathogens – Plant pathology – Tomatoes


Zdroje

1. Pasteris, R.J., Hanagan, M.A.and Shapiro, R. World Patent Appl. WO 2,008,013,925. 2008.

2. Pasteris R.J., Hanagan M.A., Bisaha J.J., Finkelstein B.L., Hoffman L.E., Gregory V., et al., Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein. Bioorganic & Medicinal Chemistry, 2016. 24(3): p. 354–361.

3. Cohen Y., The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of Pseudoperonospora cubensis—causal agent of cucurbit downy mildew. PLOS One, 2015. 10(10).

4. Cohen Y., Rubin A.E. and Galperin M. Control of cucumber downy mildew with novel fungicidal mixtures of Oxathiapiprolin. Phytoparasitica, 2018. 46(5): p. 689–704.

5. Miao J., Dong X., Chi Y., Lin D., Chen F., Du Y. et al., Pseudoperonospora cubensis in China: Its sensitivity to and control by oxathiapiprolin. Pesticide Biochemistry and Physiology (Pesticide Biochem. Physiol.), 2018. 147: p. 96–101.

6. Cohen Y., Rubin A.E., Ben Naim Y. and Galperin M., Control of basil downy mildew with oxathiapiprolin-based fungicides. Phytoparasitica, 2018. 46(329).

7. Ji P. and Csinos A.S.Effect of oxathiapiprolin on asexual life stages of Phytophthora capsici and disease development on vegetables. Ann. App. Biol., 2015. 166(2): p. 229–235.

8. Olaya G., Linley R., Edlebeck K., Kousik S. and Kuhn P. Oxathiapiprolin baseline sensitivity distribution of Phytophthora capsici isolates. Phytopathology, 2016. 106(12): p. 76.

9. Cohen Y., Rubin A.E. and Galperin M.Oxathiapiprolin-based fungicides provide enhanced control of tomato late blight induced by mefenoxam-insensitive Phytophthora infestans. PLOS ONE, 2018. 13(9): p. e0204523. doi: 10.1371/journal.pone.0204523 30260986

10. Belisle R.J., Hao W., Mckee B., Manosalva P.M. and Adaskaveg J.E. Baseline sensitivities of new fungicides for Phytophthora cinnamomi causing avocado root rot in California. Phytopathology, 2017. 107(12): p. 182.

11. Gray M.A., Hao W., Forster H. and Adaskaveg J.E., Baseline sensitivities of new fungicides and their toxicity to selected life stages of Phytophthora species from citrus in California. Plant Disease, 2018. 102(4): p. 734–742. doi: 10.1094/PDIS-08-17-1155-RE 30673403

12. Bittner R.J. and Mila A.L. Efficacy and timing of application of oxathiapiprolin against black shank of flue-cured tobacco. Crop Protection, 2017. 93: p. 9–18.

13. Hao W., Gray M.A., Forster H. and Adaskaveg J.E., Evaluation of new Oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Disease 2019. 103: p. 619–628. doi: 10.1094/PDIS-07-18-1152-RE 30789317

14. Andreassi, I.I.J.L.,Gutteridge,S.,Pember,S.O.,Sweigard, J.A and Rehberg, E.F., Detection and screening method and materials useful in performance thereof. International Patent no. WO13/009971 2013, Geneva: World Intellectual Property.

15. Weber-Boyvat M., Zhong W.B., Yan D.G. and Olkkonen V.M., Oxysterol-binding proteins: Functions in cell regulation beyond lipid metabolism. Biochemical Pharmacology, 2013. 86(1): p. 89–95. doi: 10.1016/j.bcp.2013.02.016 23428468

16. Miao J.Q., Cai M., Dong X., Liu L., Lin D., Zhang C. et al., Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Frontiers in Microbiology, 2016. 7: p. 615–620. doi: 10.3389/fmicb.2016.00615 27199944

17. Elderfield J.A.D., Lopez-Ruiz F. J. van den Bosch F. and Cunniffe N. J.,S Using epidemiological principles to explain fungicide resistance management tactics: Why do mixtures outperform alternations? Phytopathology, 2018. 108(7): p. 803–817. doi: 10.1094/PHYTO-08-17-0277-R 29377769

18. Gisi U. and Cohen Y. Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Ann. Rev. Phytopathology, 1996. 34: p. 549–572.

19. Cohen Y. and Gisi U., Differential activity of carboxylic acid amides fungicides against various developmental stages of Phytophthora infestans. Phytopathology, 2007. 97: p. 1274–1283. doi: 10.1094/PHYTO-97-10-1274 18943685

20. Reuveni M., Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur. J. Plant Pathol., 2003. 109(3): p. 243–251.

21. Gisi U., Waldner M., Kraus N., Dubuis P.H. and Sierotzki H., Inheritance of resistance to carboxylic acid amide (CAA) fungicides in Plasmopara viticola. Plant Pathol., 2007. 56: p. 199–208.

22. Cohen Y., Baider A. and Cohen B.H., Dimethomorph activity against oomycete fungal plant pathogens. Phytopathology, 1995. 85(12): p. 1500–1506.

23. Cohen Y., Rubin A.and Gotlieb D. Activity of carboxylic acid amide (CAA) fungicides against Bremia lactucae. Eur. J. Pl. Pathol., 2008. 122(1): p. 169–183.

24. Blum M., Waldner M., Olaya G. Cohen Y., Gisi U. and Sierotzki H., Resistance mechanism to carboxylic acid amid (CAA) fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Pest Manag. Sci., 2011. 67: p. 1211–1214. doi: 10.1002/ps.2238 21780281

25. Cohen Y., Rubin E., Hadad T., Gotlieb D., Sierotzki H. and Gisi U, Sensitivity of Phytophthora infestans to mandipropamid and the effect ofenforced selection pressure in the field. Plant Pathol., 2007. 56: p. 836–842.

26. Rubin A., Gotlieb D., Gisi U. and Cohen Y, Mutagenesis of Phytophthora infestans for resistance against carboxylic acid amide and phenylamide fungicides. Plant Dis., 2008. 92(5): p. 675–683. doi: 10.1094/PDIS-92-5-0675 30769584

27. Lunn D., Oxathiapiprolin (291). Ministry for Primary Industries, Editor. 2016: Wellington, New Zealand.

28. Yu P., Jia C., Zaho E., Chen L., He H., Jing J., et al., Determination of oxathiapiprolin concentration and dissipation in grapes and soil by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J. Sci. Food Agric., 2017. 97: p. 3294–3299. doi: 10.1002/jsfa.8178 27976410

29. Cohen Y., Ben-Naim Y., Falach L. and Rubin A.E, Epidemiology of basil downy mildew. Phytopathology, 2017. 107(10): p. 1149–1160. doi: 10.1094/PHYTO-01-17-0017-FI 28437138

30. Kosman E. and Cohen Y., Procedures for calculating and differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 1996. 86(11): p. 1263–1272.

31. Levy Y., Benderly M., Cohen Y., Gisi U. and Bassand D., The joint action of fungicides in mixtures: comparison of two methods for synergy calculation. EPPO Bull., 1986. 16: p. 651–657.

32. Sakai J., Miura I., Shibata M., Yonekura N., Hiyoshi H., Takagaki M., et al Development of a new fungicide, benthiavalicarb-isoprpyl. Journal of Pesticide Science, 2010. 35: p. 488–489.


Článek vyšel v časopise

PLOS One


2020 Číslo 1