Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases

Autoři: Mohamed Elhadidy aff001;  Mohamed Medhat Ali aff001;  Ayman El-Shibiny aff001;  William G. Miller aff005;  Walid F. Elkhatib aff006;  Nadine Botteldoorn aff008;  Katelijne Dierick aff009
Působiště autorů: University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt aff001;  Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt aff002;  Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt aff003;  Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt aff004;  Prodce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States of America aff005;  Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt aff006;  Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Cairo, Egypt aff007;  Diergezondheidszorg Vlaanderen (DGZ), Torhout, Belgium aff008;  National Reference Laboratory for , Sciensano, Scientific Service: Foodborne Pathogens, Brussels, Belgium aff009
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


The aim of this study is to characterize the antimicrobial resistance of Campylobacter jejuni recovered from diarrheal patients in Belgium, focusing on the genetic diversity of resistant strains and underlying molecular mechanisms of resistance among Campylobacter jejuni resistant strains isolated from diarrheal patients in Belgium. Susceptibility profile of 199 clinical C. jejuni isolates was determined by minimum inhibitory concentrations against six commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, streptomycin, gentamicin, and erythromycin). High rates of resistance were observed against nalidixic acid (56.3%), ciprofloxacin (55.8%) and tetracycline (49.7%); these rates were similar to those obtained from different national reports in broilers intended for human consumption. Alternatively, lower resistance rates to streptomycin (4.5%) and erythromycin (2%), and absolute sensitivity to gentamicin were observed. C. jejuni isolates resistant to tetracycline or quinolones (ciprofloxacin and/or nalidixic acid) were screened for the presence of the tetO gene and the C257T mutation in the quinolone resistance determining region (QRDR) of the gyrase gene gyrA, respectively. Interestingly, some of the isolates that displayed phenotypic resistance to these antimicrobials lacked the corresponding genetic determinants. Among erythromycin-resistant isolates, a diverse array of potential molecular resistance mechanisms was investigated, including the presence of ermB and mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the regulatory region of the cmeABC operon. Two of the four erythromycin-resistant isolates harboured the A2075G transition mutation in the 23S rRNA gene; one of these isolates exhibited further mutations in rplD, rplV and in the cmeABC regulatory region. This study expands the current understanding of how different genetic determinants and particular clones shape the epidemiology of antimicrobial resistance in C. jejuni in Belgium. It also reveals many questions in need of further investigation, such as the role of other undetermined molecular mechanisms that may potentially contribute to the antimicrobial resistance of Campylobacter.

Klíčová slova:

Antibiotic resistance – Antimicrobial resistance – Campylobacter – DNA sequence analysis – Erythromycin – Point mutation – Substitution mutation – Tetracyclines


1. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of Campylobacter infection. Clin Microbiol Rev. 2015;28(3):687–720. doi: 10.1128/CMR.00006-15 26062576

2. [Internet]. Available from:

3. Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 2003;69(8):4343–51. doi: 10.1128/AEM.69.8.4343-4351.2003 12902214

4. Gillespie IA, O’Brien SJ, Frost JA, Adak GK, Horby P, Swan A V., et al. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: A tool for generating hypotheses. Emerg Infect Dis. 2002;8(9):937–42. doi: 10.3201/eid0809.10.3201/eid0809.010187 12194770

5. Tam CC, O’Brien SJ, Adak GK, Meakins SM, Frost JA. Campylobacter coli—An important foodborne pathogen. J Infect. 2003;47(1):28–32. doi: 10.1016/s0163-4453(03)00042-2 12850159

6. Domingues AR, Pires SM, Halasa T, Hald T. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiology and Infection. 2012.

7. Friesema IHM, Havelaar AH, Westra PP, Wagenaar JA, van Pelt W. Poultry culling and campylobacteriosis reduction among humans, The Netherlands. Emerg Infect Dis. 2012;

8. Cody AJ, Maiden MC, Strachan NJ, McCarthy ND. A systematic review of source attribution of human campylobacteriosis using multilocus sequence typing. Euro Surveill. 2019;

9. Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses and Public Health. 2019.

10. Adhesion to and invasion of HEp-2 cells by Campylobacter spp. Infect Immun. 1989;57(10):2984–90. 2550368

11. Black RE, Levine MM, Clements M Lou, Hughes TP, Blaser MJ, Black RE. Experimental Campylobacter jejuni infection in humans. J Infect Dis. 1988;157(3):472–9. doi: 10.1093/infdis/157.3.472 3343522

12. Skirrow MB, Blaser MJ. Clinical aspects of Campylobacter. In: Nachamkin I. and Blaser MJ, editor. Campylobacter. 2nd ed. ASM press; 2000. p. 69–88.

13. Humphrey T, O’Brien S, Madsen M. Campylobacters as zoonotic pathogens: A food production perspective. Vol. 117, International Journal of Food Microbiology. 2007. p. 237–57. doi: 10.1016/j.ijfoodmicro.2007.01.006 17368847

14. Blaser MJ, Engberg J. Clinical Aspects of Campylobacter jejuni and Campylobacter coli Infections. In: Campylobacter, Third Edition. 2014. p. 99–121.

15. Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. Biomed Res Int. 2013;2013.

16. Alfredson DA, Korolik V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters. 2007.

17. Corcoran D, Quinn T, Cotter L, Fanning S. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int J Antimicrob Agents. 2006;27(1):40–5. doi: 10.1016/j.ijantimicag.2005.08.019 16318913

18. Kurinčič M, Botteldoorn N, Herman L, Smole Možina S. Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. Int J Food Microbiol. 2007;120(1–2):186–90. doi: 10.1016/j.ijfoodmicro.2007.03.012 17889390

19. Lin J, Yan M, Sahin O, Pereira S, Chang YJ, Zhang Q. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother. 2007;51(5):1678–86. doi: 10.1128/AAC.01411-06 17353243

20. Moore JE, Barton MD, Blair IS, Corcoran D, Dooley JSG, Fanning S, et al. The epidemiology of antibiotic resistance in Campylobacter. Vol. 8, Microbes and Infection. 2006. p. 1955–66. doi: 10.1016/j.micinf.2005.12.030 16716632

21. Payot S, Bolla JM, Corcoran D, Fanning S, Mégraud F, Zhang Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Vol. 8, Microbes and Infection. 2006. p. 1967–71. doi: 10.1016/j.micinf.2005.12.032 16713726

22. Skirrow MB. Diseases due to Campylobacter, Helicobacter and related bacteria. Vol. 111, Journal of Comparative Pathology. 1994. p. 113–49. doi: 10.1016/s0021-9975(05)80046-5 7806700

23. Marshall BM, Levy SB. Food animals and antimicrobials: Impacts on human health. Vol. 24, Clinical Microbiology Reviews. 2011. p. 718–33. doi: 10.1128/CMR.00002-11 21976606

24. Engberg J, Aarestrup FM, Taylor DE, Gerner-Smidt P, Nachamkin I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: Resistance mechanisms and trends in human isolates. Vol. 7, Emerging Infectious Diseases. 2001. p. 24–34. doi: 10.3201/eid0701.010104 11266291

25. Nelson JM, Smith KE, Vugia DJ, Rabatsky‐Ehr T, Segler SD, Kassenborg HD, et al. Prolonged Diarrhea Due to Ciprofloxacin‐Resistant Campylobacter Infection. J Infect Dis. 2004;190(6):1150–7. doi: 10.1086/423282 15319866

26. Iovine NM. Resistance mechanisms in Campylobacter jejuni. Vol. 4, Virulence. 2013. p. 230–40. doi: 10.4161/viru.23753 23406779

27. Vacher S, Menard A, Bernard E, Santos A, Megraud F. Detection of Mutations Associated with Macrolide Resistance in Thermophilic Campylobacter spp. by Real-Time PCR. Microb Drug Resist. 2005;11(1):40–7. doi: 10.1089/mdr.2005.11.40 15770093

28. Pérez-Boto D, López-Portolés JA, Simón C, Valdezate S, Echeita MA. Study of the molecular mechanisms involved in high-level macrolide resistance of Spanish Campylobacter jejuni and Campylobacter coli strains. J Antimicrob Chemother. 2010;65(10):2083–8. doi: 10.1093/jac/dkq268 20647243

29. Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 2003;22(4):945–53. doi: 10.1093/emboj/cdg093 12574130

30. Gibreel A, Tracz DM, Nonaka L, Ngo TM, Connell SR, Taylor DE. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance. Antimicrob Agents Chemother. 2004;48(9):3442–50. doi: 10.1128/AAC.48.9.3442-3450.2004 15328109

31. Wu Z, Sippy R, Sahin O, Plummer P, Vidal A, Newell D, et al. Genetic diversity and antimicrobial susceptibility of Campylobacter jejuni isolates associated with sheep abortion in the United States and Great Britain. J Clin Microbiol. 2014;52(6):1853–61. doi: 10.1128/JCM.00355-14 24648552

32. Qin S, Wang Y, Zhang Q, Zhang M, Deng F, Shen Z, et al. Report of ribosomal RNA methylase gene erm(B) in multidrug-resistant Campylobacter coli. J Antimicrob Chemother. 2014;69(4):964–8. doi: 10.1093/jac/dkt492 24335515

33. Akiba M, Lin J, Barton YW, Zhang Q. Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother. 2006;57(1):52–60. doi: 10.1093/jac/dki419 16303882

34. Stone D, Davis M, Baker K, Besser T, Roopnarine R, Sharma R. MLST genotypes and antibiotic resistance of Campylobacter spp. isolated from poultry in Grenada. Biomed Res Int. 2013;2013.

35. Elhadidy M, Miller WG, Arguello H, álvarez-Ordóñez A, Duarte A, Dierick K, et al. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Front Microbiol. 2018;9(MAY).

36. Kittl S, Heckel G, Korczak BM, Kuhnert P. Source attribution of human Campylobacter isolates by MLST and Fla-typing and association of genotypes with quinolone resistance. PLoS One. 2013;8(11).

37. Kovač J, Čadež N, Lušicky M, Nielsen EM, Ocepek M, Raspor P, et al. The evidence for clonal spreading of quinolone resistance with a particular clonal complex of Campylobacter jejuni. Epidemiol Infect. 2014;142(12):2595–603. doi: 10.1017/S0950268813003245 24534165

38. Kovač J, Čadež N, Stessl B, Stingl K, Gruntar I, Ocepek M, et al. High genetic similarity of ciprofloxacin-resistant Campylobacter jejuni in central Europe. Front Microbiol. 2015;6(OCT).

39. Klein-Jöbstl D, Sofka D, Iwersen M, Drillich M, Hilbert F. Multilocus sequence typing and antimicrobial resistance of Campylobacter jejuni isolated from dairy calves in Austria. Front Microbiol. 2016;7(FEB).

40. Helwigh B;, Porsbo LJ;, Boysen L;, Bager F. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2014. EFSA J [Internet]. 2015;13(12). Available from:

41. Elhadidy M, Arguello H, Álvarez-Ordóñez A, Miller WG, Duarte A, Martiny D, et al. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol. 2018;275:66–75. doi: 10.1016/j.ijfoodmicro.2018.04.004 29649751

42. Shin E, Hong H, Oh Y, Lee Y. First report and molecular characterization of a Campylobacter jejuni isolate with extensive drug resistance from a travel-associated human case. Antimicrob Agents Chemother. 2015;59(10):6670–2. doi: 10.1128/AAC.01395-15 26239988

43. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;

44. Zirnstein G, Li Y, Swaminathan B, Angulo F. Ciprofloxacin resistance in Campylobacter jejuni isolates: Detection of gyrA resistance mutations by mismatch amplification mutation assay PCR and DNA sequence analysis. J Clin Microbiol. 1999;37(10):3276–80. 10488192

45. Zhou J, Zhang M, Yang W, Fang Y, Wang G, Hou F. A seventeen-year observation of the antimicrobial susceptibility of clinical Campylobacter jejuni and the molecular mechanisms of erythromycin-resistant isolates in Beijing, China. Int J Infect Dis. 2016;42:28–33. doi: 10.1016/j.ijid.2015.11.005 26594011

46. Alonso R, Mateo E, Churruca E, Martinez I, Girbau C, Fernández-Astorga A. MAMA-PCR assay for the detection of point mutations associated with high-level erythromycin resistance in Campylobacter jejuni and Campylobacter coli strains. J Microbiol Methods. 2005;63(1):99–103. doi: 10.1016/j.mimet.2005.03.013 15927294

47. Miller WG, On SLW, Wang G, Fontanoz S, Lastovica AJ, Mandrell RE, et al. Extended Multilocus Sequence Typing System for Campylobacter coli. J Clin Microbiol. 2005;43(5):2315–29. doi: 10.1128/JCM.43.5.2315-2329.2005 15872261

48. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–20. doi: 10.1007/bf01731581 7463489

49. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. doi: 10.1093/molbev/mst197 24132122

50. Akinkunmi EO, Adesunkanmi AR, Lamikanra A. Pattern of pathogens from surgical wound infections in a Nigerian hospital and their antimicrobial susceptibility profiles. Afr Health Sci. 2014;14(4):802–9. doi: 10.4314/ahs.v14i4.5 25834486

51. WHO-AGISAR Advisory Group on Integrated Surveillance of Antimicrobial Resistance. Summary for Policymakers [Internet]. Climate Change 2013—The Physical Science Basis. 2017. 1–30 p. Available from:

52. Habib I, Miller WG, Uyttendaele M, Houf K, De Zutter L. Clonal population structure and antimicrobial resistance of Campylobacter jejuni in chicken meat from Belgium. Appl Environ Microbiol. 2009;75(13):4264–72. doi: 10.1128/AEM.00168-09 19411429

53. Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science. 2007.

54. Maron DF, Smith TJS, Nachman KE. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global Health. 2013;

55. Levy SB, Bonnie M. Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine. 2004.

56. van den Bogaard AE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother. 2001;47(6):763–71. doi: 10.1093/jac/47.6.763 11389108

57. Walton JR. Antimicrobial therapy in veterinary medicine. Vol. 145, British Veterinary Journal. Blackwell publishing; 2012. 199 p.

58. Agunos A, Léger D, Avery BP, Parmley EJ, Deckert A, Carson CA, et al. Ciprofloxacin-resistant campylobacter sppin retail chicken, Western Canada. Emerg Infect Dis. 2013;

59. Sam WIC, Lyons MM, Waghorn DJ. Increasing rates of ciprofloxacin resistant Campylobacter. Vol. 52, Journal of Clinical Pathology. 1999. p. 709. doi: 10.1136/jcp.52.9.709 10656000

60. Jacobs‐Reitsma WF, Kan CA, Bolder NM. The induction of quinolone resistance in Campylobacter bacteria in broilers by quinolone treatment. Lett Appl Microbiol. 1994;19(4):228–31.

61. Vandenberg O, Houf K, Douat N, Vlaes L, Retore P, Butzler JP, et al. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. J Antimicrob Chemother. 2006;57(5):908–13. doi: 10.1093/jac/dkl080 16533825

62. Van Looveren M. Antimicrobial susceptibilities of Campylobacter strains isolated from food animals in Belgium. J Antimicrob Chemother. 2001;48(2):235–40. doi: 10.1093/jac/48.2.235 11481294

63. The European union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019;17(2).

64. Petersen L, Nielsen EM, On SLW. Serotype and genotype diversity and hatchery transmission of Campylobacter jejuni in commercial poultry flocks. Vet Microbiol. 2001;82(2):141–54. doi: 10.1016/s0378-1135(01)00382-0 11423205

65. Tang Y, Fang L, Xu C, Zhang Q. Antibiotic resistance trends and mechanisms in the foodborne pathogen, Campylobacter. Vol. 18, Animal Health Research Reviews. 2017. p. 87–98. doi: 10.1017/S1466252317000135 29166961

66. Niwa H, Chuma T, Okamoto K, Itoh K. Rapid detection of mutations associated with resistance to erythromycin in Campylobacter jejuni/coli by PCR and line probe assay. Int J Antimicrob Agents. 2001;18(4):359–64. doi: 10.1016/s0924-8579(01)00425-3 11691569

67. Caldwell DB, Wang Y, Lin J. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother. 2008;52(11):3947–54. doi: 10.1128/AAC.00450-08 18779354

68. Lin J, Akiba M, Sahin O, Zhang Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother. 2005;49(3):1067–75. doi: 10.1128/AAC.49.3.1067-1075.2005 15728904

69. Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, et al. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol. 2005;187(21):7417–24. doi: 10.1128/JB.187.21.7417-7424.2005 16237025

70. Cha W, Mosci R, Wengert SL, Singh P, Newton DW, Salimnia H, et al. Antimicrobial susceptibility profiles of human Campylobacter jejuni isolates and association with phylogenetic lineages. Front Microbiol. 2016;7(APR).

71. Cody AJ, McCarthy NM, Wimalarathna HL, Colles FM, Clark L, Bowler ICJW, et al. A longitudinal 6-year study of the molecular epidemiology of clinical Campylobacter isolates in Oxfordshire, United Kingdom. J Clin Microbiol. 2012;50(10):3193–201. doi: 10.1128/JCM.01086-12 22814466

72. Wimalarathna HM, Richardson JF, Lawson AJ, Elson R, Meldrum R, Little CL, et al. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages. BMC Microbiol. 2013;13(1).

73. Sheppard SK, Cheng L, Méric G, De Haan CPA, Llarena AK, Marttinen P, et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol Ecol. 2014;23(10):2442–51. doi: 10.1111/mec.12742 24689900

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden