#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Comparison of the myometrial transcriptome from singleton and twin pregnancies by RNA-Seq


Autoři: Sarah Arrowsmith aff001;  Yongxiang Fang aff002;  Andrew Sharp aff001
Působiště autorů: Harris-Wellbeing Preterm Birth Research Centre, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom aff001;  Centre for Genomic Research, University of Liverpool, Liverpool United Kingdom aff002;  University of Liverpool and Liverpool Women’s NHS Foundation Trust, members of Liverpool Health Partners, Liverpool, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227882

Souhrn

Preterm birth is recognized as the primary cause of infant mortality worldwide. Twin pregnancies are significantly more at risk of preterm birth than singleton pregnancies. A greater understanding of why this is and better modes of treatment and prevention are needed. Key to this is determining the differing pathophysiological mechanisms of preterm birth in twins, including the role of the myometrium and premature uterine contraction.

We performed RNA sequencing (RNA-Seq) of human myometrium from singleton and twin pregnancies at term (> 37+0 weeks) and preterm (< 37+0 weeks), collected during pre-labour Caesarean Section. RNA-Seq libraries were prepared from polyA-selected RNA and sequenced on the Illumina HiSeq 4000 platform. Differentially expressed genes (DEGs), GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment were conducted using R software. Significance was determined with a false discovery rate–adjusted P value of <0.05. Only 3 DEGs were identified between gestational age-matched singleton and twin myometrium and only 1 DEG identified between singleton term and twin preterm tissues. Comparison of singleton preterm myometrium with twin term myometrium however, revealed 75 down-regulated and 24 up-regulated genes in twin myometrium. This included genes associated with inflammation and immune response, T cell maturation and differentiation and steroid biosynthesis. GO and KEGG enrichment analyses for biologically relevant processes and functions also revealed several terms related to inflammation and immune response, as well as cytokine-cytokine receptor interaction and chemokine receptor signalling. Data indicate that little or no differences exist in the transcriptome of singleton and twin myometrium when matched for gestational age. The significant up- and down-regulation of genes identified between preterm singleton and twin myometrium at term may point to transcriptome changes associated with the chronic levels of uterine stretch in twin pregnancy or genes associated with the myometrium transitioning to labour onset.

Klíčová slova:

Gene expression – Immune receptor signaling – Myometrium – Pregnancy – Preterm birth – RNA sequencing – Transcriptome analysis – Twins


Zdroje

1. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Drake P. Births: Final Data for 2016. Natl Vital Stat Rep. 2018;67(1):1–55. Epub 2018/05/19. 29775434.

2. NICE. National Institute for Health and Care Excellence Clinical Guidelines: Multiple pregnancy: The management of twin and triplet pregnancy in the antenatal period (CG129). 2011.

3. Stock S, Norman J. Preterm and term labour in multiple pregnancies. Seminars in fetal & neonatal medicine. 2010;15(6):336–41. Epub 2010/07/21. doi: 10.1016/j.siny.2010.06.006 20643592.

4. Murray SR, Stock SJ, Cowan S, Cooper ES, Norman JE. Spontaneous preterm birth prevention in multiple pregnancy. Obstet Gynaecol. 2018;20(1):57–63. doi: 10.1111/tog.12460 30008614.

5. Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–5. Epub 2014/08/16. doi: 10.1126/science.1251816 25124429; PubMed Central PMCID: PMC4191866.

6. Manabe Y, Manabe A, Sagawa N. Stretch-induced cervical softening and initiation of labor at term. A possible correlation with prostaglandins. Acta Obstet Gynecol Scand. 1982;61(3):279–80. Epub 1982/01/01. doi: 10.3109/00016348209156572 7124361.

7. Manabe Y, Yoshimura S, Mori T, Aso T. Plasma levels of 13,14-dihydro-15-keto prostaglandin F2 alpha, estrogens, and progesterone during stretch-induced labor at term. Prostaglandins. 1985;30(1):141–52. Epub 1985/07/01. doi: 10.1016/s0090-6980(85)80018-6 4048477.

8. Jozwiak M, Bloemenkamp KW, Kelly AJ, Mol BW, Irion O, Boulvain M. Mechanical methods for induction of labour. Cochrane Database Syst Rev. 2012;(3):CD001233. Epub 2012/03/16. doi: 10.1002/14651858.CD001233.pub2 22419277.

9. Schoen CN, Saccone G, Backley S, Sandberg EM, Gu N, Delaney S, et al. Increased single-balloon Foley catheter volume for induction of labor and time to delivery: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018;97(9):1051–60. Epub 2018/04/03. doi: 10.1111/aogs.13353 29607491.

10. Adams Waldorf KM, Singh N, Mohan AR, Young RC, Ngo L, Das A, et al. Uterine overdistention induces preterm labor mediated by inflammation: observations in pregnant women and nonhuman primates. Am J Obstet Gynecol. 2015;213(6):830 e1– e19. doi: 10.1016/j.ajog.2015.08.028 26284599.

11. Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod. 2004;10(2):109–13. Epub 2004/01/27. doi: 10.1093/molehr/gah021 14742695.

12. Terzidou V, Sooranna SR, Kim LU, Thornton S, Bennett PR, Johnson MR. Mechanical stretch up-regulates the human oxytocin receptor in primary human uterine myocytes. J Clin Endocrinol Metab. 2005;90(1):237–46. Epub 2004/10/21. doi: 10.1210/jc.2004-0277 15494465.

13. Loudon JA, Sooranna SR, Bennett PR, Johnson MR. Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis. Mol Hum Reprod. 2004;10(12):895–9. Epub 2004/10/19. doi: 10.1093/molehr/gah112 15489245.

14. Lee YH, Shynlova O, Lye SJ. Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation. Cell Mol Immunol. 2015;12(2):231–42. doi: 10.1038/cmi.2014.39 24882387.

15. Arrowsmith S, Kendrick A, Wray S. Drugs acting on the pregnant uterus. Obstetrics, Gynaecology and Reproductive Medicine. 2010;20(8):241–7. doi: 10.1016/j.ogrm.2010.05.001 24443652

16. Haas DM, Caldwell DM, Kirkpatrick P, McIntosh JJ, Welton NJ. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ. 2012;345:e6226. Epub 2012/10/11. doi: 10.1136/bmj.e6226 23048010.

17. Jarde A, Lutsiv O, Beyene J, McDonald SD. Vaginal progesterone, oral progesterone, 17-OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnancies: an updated systematic review and network meta-analysis. BJOG. 2019;126(5):556–67. Epub 2018/11/28. doi: 10.1111/1471-0528.15566 30480871.

18. Jarde A, Lutsiv O, Park CK, Barrett J, Beyene J, Saito S, et al. Preterm birth prevention in twin pregnancies with progesterone, pessary, or cerclage: a systematic review and meta-analysis. BJOG. 2017;124(8):1163–73. Epub 2017/02/09. doi: 10.1111/1471-0528.14513 28176485.

19. Turton P, Neilson JP, Quenby S, Burdyga T, Wray S. A short review of twin pregnancy and how oxytocin receptor expression may differ in multiple pregnancy. Eur J Obstet Gynecol Reprod Biol. 2009;144 Suppl 1:S40–4. Epub 2009/03/24. doi: 10.1016/j.ejogrb.2009.02.011 19303192.

20. Arrowsmith S, Neilson J, Bricker L, Wray S. Differing In Vitro Potencies of Tocolytics and Progesterone in Myometrium From Singleton and Twin Pregnancies. Reprod Sci. 2016;23(1):98–111. Epub 2015/08/05. doi: 10.1177/1933719115597788 26239389.

21. Arrowsmith S, Neilson J, Wray S. The combination tocolytic effect of magnesium sulfate and an oxytocin receptor antagonist in myometrium from singleton and twin pregnancies. Am J Obstet Gynecol. 2016;215(6):789 e1– e9. Epub 2016/08/25. doi: 10.1016/j.ajog.2016.08.015 27555315.

22. Yin Z, He W, Li Y, Li D, Li H, Yang Y, et al. Adaptive reduction of human myometrium contractile activity in response to prolonged uterine stretch during term and twin pregnancy. Role of TREK-1 channel. Biochem Pharmacol. 2018;152:252–63. doi: 10.1016/j.bcp.2018.03.021 29577872.

23. Lyall F, Lye S, Teoh T, Cousins F, Milligan G, Robson S. Expression of Gsalpha, connexin-43, connexin-26, and EP1, 3, and 4 receptors in myometrium of prelabor singleton versus multiple gestations and the effects of mechanical stretch and steroids on Gsalpha. Journal of the Society for Gynecologic Investigation. 2002;9(5):299–307. doi: 10.1016/s1071-5576(02)00175-2 12383915.

24. Breuiller-Fouche M, Germain G. Gene and protein expression in the myometrium in pregnancy and labor. Reproduction. 2006;131(5):837–50. Epub 2006/05/05. 131/5/837 [pii] doi: 10.1530/rep.1.00725 16672349.

25. Bukowski R, Hankins GD, Saade GR, Anderson GD, Thornton S. Labor-associated gene expression in the human uterine fundus, lower segment, and cervix. PLoS Med. 2006;3(6):e169. doi: 10.1371/journal.pmed.0030169 16768543.

26. Esplin MS, Fausett MB, Peltier MR, Hamblin S, Silver RM, Branch DW, et al. The use of cDNA microarray to identify differentially expressed labor-associated genes within the human myometrium during labor. Am J Obstet Gynecol. 2005;193(2):404–13. Epub 2005/08/16. doi: 10.1016/j.ajog.2004.12.021 16098862.

27. Havelock JC, Keller P, Muleba N, Mayhew BA, Casey BM, Rainey WE, et al. Human myometrial gene expression before and during parturition. Biol Reprod. 2005;72(3):707–19. Epub 2004/10/29. doi: 10.1095/biolreprod.104.032979 15509731.

28. Mittal P, Romero R, Tarca AL, Gonzalez J, Draghici S, Xu Y, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010;38(6):617–43. doi: 10.1515/JPM.2010.097 20629487.

29. Bollapragada S, Youssef R, Jordan F, Greer I, Norman J, Nelson S. Term labor is associated with a core inflammatory response in human fetal membranes, myometrium, and cervix. Am J Obstet Gynecol. 2009;200(1):104 e1–11. Epub 2009/01/06. S0002-9378(08)00934-4 [pii] doi: 10.1016/j.ajog.2008.08.032 19121663.

30. Sharp GC, Hutchinson JL, Hibbert N, Freeman TC, Saunders PT, Norman JE. Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women. PloS one. 2016;11(5):e0155413. doi: 10.1371/journal.pone.0155413 27176052.

31. Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, et al. Identifying genetic networks underlying myometrial transition to labor. Genome Biol. 2005;6(2):R12. doi: 10.1186/gb-2005-6-2-r12 15693941.

32. Bethin KE, Nagai Y, Sladek R, Asada M, Sadovsky Y, Hudson TJ, et al. Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol Endocrinol. 2003;17(8):1454–69. Epub 2003/05/31. doi: 10.1210/me.2003-0007 12775764.

33. Girotti M, Zingg HH. Gene expression profiling of rat uterus at different stages of parturition. Endocrinology. 2003;144(6):2254–65. Epub 2003/05/15. doi: 10.1210/en.2002-0196 12746283.

34. Chan YW, van den Berg HA, Moore JD, Quenby S, Blanks AM. Assessment of myometrial transcriptome changes associated with spontaneous human labour by high-throughput RNA-seq. Exp Physiol. 2014;99(3):510–24. Epub 2013/11/26. doi: 10.1113/expphysiol.2013.072868 24273302.

35. Migale R, MacIntyre DA, Cacciatore S, Lee YS, Hagberg H, Herbert BR, et al. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med. 2016;14(1):86. doi: 10.1186/s12916-016-0632-4 27291689.

36. Stanfield Z, Johnson MR, Blanks AM, Romero R, Chance MR, Mesiano S, et al. Myometrial Transcriptional Signatures of Human Parturition. Front Genet. 2019;10:185. doi: 10.3389/fgene.2019.00185 30988671.

37. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal,. 2011;17:10–2.

38. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36 23618408.

39. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106 20979621.

40. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616 19910308.

41. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate—a Practical and Powerful Approach to Multiple Testing. J R Stat Soc B. 1995;57(1):289–300. WOS:A1995QE45300017.

42. Lye SJ, Mitchell J, Nashman N, Oldenhof A, Ou R, Shynlova O, et al. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res. 2001;27:165–78. Epub 2001/07/14. doi: 10.1159/000061025 11450425.

43. Shynlova O, Kwong R, Lye SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction. 2010;139(1):247–53. Epub 2009/09/25. doi: 10.1530/REP-09-0260 19776098.

44. Ramsey EM. Anatomy of the human uterus. The uterus. 1994:18–40.

45. Shynlova O, Lee YH, Srikhajon K, Lye SJ. Physiologic uterine inflammation and labor onset: integration of endocrine and mechanical signals. Reprod Sci. 2013;20(2):154–67. Epub 2012/05/23. doi: 10.1177/1933719112446084 22614625.

46. Slattery MM, Morrison JJ. Preterm delivery. Lancet. 2002;360(9344):1489–97. Epub 2002/11/16. doi: 10.1016/S0140-6736(02)11476-0 12433531.

47. Biggio JR, Anderson S. Spontaneous Preterm Birth in Multiples. Clin Obstet Gynecol. 2015;58(3):654–67. Epub 2015/06/18. doi: 10.1097/GRF.0000000000000120 26083129.

48. Bacelis J, Juodakis J, Adams Waldorf KM, Sengpiel V, Muglia LJ, Zhang G, et al. Uterine distention as a factor in birth timing: retrospective nationwide cohort study in Sweden. BMJ open. 2018;8(10):e022929. doi: 10.1136/bmjopen-2018-022929 30385442.

49. Sokolowski P, Saison F, Giles W, McGrath S, Smith D, Smith J, et al. Human uterine wall tension trajectories and the onset of parturition. PloS one. 2010;5(6):e11037. Epub 2010/06/30. doi: 10.1371/journal.pone.0011037 20585649; PubMed Central PMCID: PMC2890413.

50. Hua R, Pease JE, Cheng W, Sooranna SR, Viney JM, Nelson SM, et al. Human labour is associated with a decline in myometrial chemokine receptor expression: the role of prostaglandins, oxytocin and cytokines. Am J Reprod Immunol. 2013;69(1):21–32. Epub 2012/10/10. doi: 10.1111/aji.12025 23043391.

51. Aye I, Moraitis AA, Stanislaus D, Charnock-Jones DS, Smith GCS. Retosiban Prevents Stretch-Induced Human Myometrial Contractility and Delays Labor in Cynomolgus Monkeys. J Clin Endocrinol Metab. 2018;103(3):1056–67. doi: 10.1210/jc.2017-02195 29293998.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#