CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction


Autoři: Elif Aplak aff001;  Claudia von Montfort aff001;  Lisa Haasler aff001;  David Stucki aff001;  Bodo Steckel aff002;  Andreas S. Reichert aff001;  Wilhelm Stahl aff001;  Peter Brenneisen aff001
Působiště autorů: Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany aff001;  Department of Molecular Cardiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227926

Souhrn

Cerium (Ce) oxide nanoparticles (CNP; nanoceria) are reported to have cytotoxic effects on certain cancerous cell lines, while at the same concentration they show no cytotoxicity on normal (healthy) cells. Redox-active CNP exhibit both selective prooxidative as well as antioxidative properties. The former is proposed to be responsible for impairment of tumor growth and invasion and the latter for rescuing normal cells from reactive oxygen species (ROS)-induced damage. Here we address possible underlying mechanisms of prooxidative effects of CNP in a metastatic human melanoma cell line. Malignant melanoma is the most aggressive form of skin cancer, and once it becomes metastatic the prognosis is very poor. We have shown earlier that CNP selectively kill A375 melanoma cells by increasing intracellular ROS levels, whose basic amount is significantly higher than in the normal (healthy) counterpart, the melanocytes. Here we show that CNP initiate a mitochondrial increase of ROS levels accompanied by an increase in mitochondrial thiol oxidation. Furthermore, we observed CNP-induced changes in mitochondrial bioenergetics, dynamics, and cristae morphology demonstrating mitochondrial dysfunction which finally led to tumor cell death. CNP-induced cell death is abolished by administration of PEG-conjugated catalase. Overall, we propose that cerium oxide nanoparticles mediate cell death via hydrogen peroxide production linked to mitochondrial dysfunction.

Klíčová slova:

Hydrogen peroxide – Melanocytes – Melanoma cells – Membrane potential – Mitochondria – Oxidation – Thiols – Superoxides


Zdroje

1. Brenneisen P, Reichert AS. Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective. Antioxidants (Basel). 2018;7(2). Epub 2018/02/23. doi: 10.3390/antiox7020031 29470419; PubMed Central PMCID: PMC5836021.

2. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2011;12(1):39–50. Epub 2011/12/24. doi: 10.1038/nrc3180 22193407.

3. Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). 2007;(10):1056–8. Epub 2007/02/28. doi: 10.1039/b615134e 17325804.

4. Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, et al. Nanoceria as Antioxidant: Synthesis and Biomedical Applications. Jom (1989). 2008;60(3):33–7. Epub 2008/03/01. doi: 10.1007/s11837-008-0029-8 20617106; PubMed Central PMCID: PMC2898180.

5. Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, et al. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal. 2013;19(8):765–78. Epub 2012/12/04. doi: 10.1089/ars.2012.4831 23198807; PubMed Central PMCID: PMC3752511.

6. von Montfort C, Alili L, Teuber-Hanselmann S, Brenneisen P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol. 2015;4:1–5. Epub 2014/12/06. doi: 10.1016/j.redox.2014.11.007 25479549; PubMed Central PMCID: PMC4309849.

7. Pezzini I, Marino A, Del Turco S, Nesti C, Doccini S, Cappello V, et al. Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine (Lond). 2017;12(4):403–16. Epub 2016/12/22. doi: 10.2217/nnm-2016-0342 28000542.

8. Gagnon J, Fromm KM. Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria) Depending on Their Preparation Method, Particle Size, Cell Type, and Exposure Route. 2015;2015(27):4510–7. doi: 10.1002/ejic.201500643

9. Sack-Zschauer M, Karaman-Aplak E, Wyrich C, Das S, Schubert T, Meyer H, et al. Efficacy of Different Compositions of Cerium Oxide Nanoparticles in Tumor-Stroma Interaction. J Biomed Nanotechnol. 2017;13(12):1735–46. Epub 2018/03/02. doi: 10.1166/jbn.2017.2452 29490761.

10. Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, et al. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials. 2011;32(11):2918–29. Epub 2011/01/29. doi: 10.1016/j.biomaterials.2010.12.056 21269688.

11. Alili L, Sack M, Puschmann K, Brenneisen P. Fibroblast-to-myofibroblast switch is mediated by NAD(P)H oxidase generated reactive oxygen species. Biosci Rep. 2014;34(1). Epub 2014/02/01. doi: 10.1042/BSR20130091 27919042; PubMed Central PMCID: PMC3891321.

12. Cheng G, Guo W, Han L, Chen E, Kong L, Wang L, et al. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicology in vitro: an international journal published in association with BIBRA. 2013;27(3):1082–8. Epub 2013/02/19. doi: 10.1016/j.tiv.2013.02.005 23416263.

13. Mittal S, Pandey AK. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. Biomed Res Int. 2014;2014:891934. Epub 2014/07/06. doi: 10.1155/2014/891934 24987704; PubMed Central PMCID: PMC4058670.

14. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. Epub 2008/12/09. doi: 10.1042/BJ20081386 19061483; PubMed Central PMCID: PMC2605959.

15. Ursini F, Maiorino M, Forman HJ. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205–15. Epub 2016/01/29. doi: 10.1016/j.redox.2016.01.010 26820564; PubMed Central PMCID: PMC4732014.

16. Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6(10):1813–20. Epub 2010/08/11. doi: 10.1039/c0mb00014k 20697616; PubMed Central PMCID: PMC3039285.

17. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59. Epub 2012/03/20. doi: 10.1016/j.cell.2012.02.035 22424226; PubMed Central PMCID: PMC5381524.

18. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Current biology: CB. 2006;16(14):R551–60. Epub 2006/07/25. doi: 10.1016/j.cub.2006.06.054 16860735.

19. Wiedemann N, Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annual review of biochemistry. 2017;86:685–714. Epub 2017/03/17. doi: 10.1146/annurev-biochem-060815-014352 28301740.

20. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nature reviews Molecular cell biology. 2007;8(11):870–9. Epub 2007/10/12. doi: 10.1038/nrm2275 17928812.

21. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166(3):555–66. Epub 2016/07/30. doi: 10.1016/j.cell.2016.07.002 27471965; PubMed Central PMCID: PMC5036969.

22. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98. Epub 2012/09/25. doi: 10.1038/nrc3365 23001348; PubMed Central PMCID: PMC4371788.

23. Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem. 2010;47:115–37. Epub 2010/06/11. doi: 10.1042/bse0470115 20533904.

24. Weber TA, Reichert AS. Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol. 2010;45(7–8):503–11. Epub 2010/05/11. doi: 10.1016/j.exger.2010.03.018 20451598.

25. Reichert AS, Neupert W. Mitochondriomics or what makes us breathe. Trends Genet. 2004;20(11):555–62. Epub 2004/10/12. doi: 10.1016/j.tig.2004.08.012 15475115.

26. Cole NB, Daniels MP, Levine RL, Kim G. Oxidative stress causes reversible changes in mitochondrial permeability and structure. Exp Gerontol. 2010;45(7–8):596–602. Epub 2010/01/26. doi: 10.1016/j.exger.2010.01.016 20096768; PubMed Central PMCID: PMC2879436.

27. Strom J, Xu B, Tian X, Chen QM. Nrf2 protects mitochondrial decay by oxidative stress. FASEB J. 2016;30(1):66–80. Epub 2015/09/06. doi: 10.1096/fj.14-268904 26340923; PubMed Central PMCID: PMC4684526.

28. Jezek J, Cooper KF, Strich R. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants (Basel). 2018;7(1). Epub 2018/01/18. doi: 10.3390/antiox7010013 29337889; PubMed Central PMCID: PMC5789323.

29. Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol. 2015;11(1):9–15. Epub 2014/12/18. doi: 10.1038/nchembio.1712 25517383; PubMed Central PMCID: PMC4340667.

30. Sies H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem. 2014;289(13):8735–41. Epub 2014/02/12. doi: 10.1074/jbc.R113.544635 24515117; PubMed Central PMCID: PMC3979367.

31. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3. Epub 2015/01/16. doi: 10.1016/j.redox.2015.01.002 25588755; PubMed Central PMCID: PMC4309861.

32. Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal. 2013;18(13):1557–93. Epub 2012/12/19. doi: 10.1089/ars.2012.4655 23244515.

33. Collins Y, Chouchani ET, James AM, Menger KE, Cocheme HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci. 2012;125(Pt 4):801–6. Epub 2012/03/27. doi: 10.1242/jcs.098475 22448036.

34. Cui X. Reactive oxygen species: the achilles' heel of cancer cells? Antioxid Redox Signal. 2012;16(11):1212–4. Epub 2012/02/07. doi: 10.1089/ars.2012.4532 22304673; PubMed Central PMCID: PMC3324810.

35. Seo YH, Carroll KS. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc Natl Acad Sci U S A. 2009;106(38):16163–8. Epub 2009/10/07. doi: 10.1073/pnas.0903015106 19805274; PubMed Central PMCID: PMC2741475.

36. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods. 1983;65(1–2):55–63. Epub 1983/12/16. doi: 10.1016/0022-1759(83)90303-4 6606682.

37. Maydt D, De Spirt S, Muschelknautz C, Stahl W, Muller TJ. Chemical reactivity and biological activity of chalcones and other alpha,beta-unsaturated carbonyl compounds. Xenobiotica. 2013;43(8):711–8. Epub 2013/01/24. doi: 10.3109/00498254.2012.754112 23339572.

38. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. Epub 1970/08/15. doi: 10.1038/227680a0 5432063.

39. Wang X, Roper MG. Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans. Anal Methods. 2014;6(9):3019–24. Epub 2014/06/24. doi: 10.1039/C4AY00288A 24955137; PubMed Central PMCID: PMC4061712.

40. Tetz LM, Kamau PW, Cheng AA, Meeker JD, Loch-Caruso R. Troubleshooting the dichlorofluorescein assay to avoid artifacts in measurement of toxicant-stimulated cellular production of reactive oxidant species. J Pharmacol Toxicol Methods. 2013;67(2):56–60. Epub 2013/02/06. doi: 10.1016/j.vascn.2013.01.195 23380227; PubMed Central PMCID: PMC3795613.

41. Polster BM, Nicholls DG, Ge SX, Roelofs BA. Use of potentiometric fluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol. 2014;547:225–50. Epub 2014/11/25. doi: 10.1016/B978-0-12-801415-8.00013-8 25416361; PubMed Central PMCID: PMC4484872.

42. Fu D, Lippincott-Schwartz J. Monitoring the Effects of Pharmacological Reagents on Mitochondrial Morphology. Curr Protoc Cell Biol. 2018;79(1):e45. Epub 2018/06/21. doi: 10.1002/cpcb.45 29924486.

43. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc. 2009;4(11):1582–90. Epub 2009/10/10. doi: 10.1038/nprot.2009.151 19816421.

44. Creed S, McKenzie M. Measurement of Mitochondrial Membrane Potential with the Fluorescent Dye Tetramethylrhodamine Methyl Ester (TMRM). Methods Mol Biol. 2019;1928:69–76. Epub 2019/02/07. doi: 10.1007/978-1-4939-9027-6_5 30725451.

45. Scaduto RC Jr., Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1 Pt 1):469–77. Epub 1999/01/06. doi: 10.1016/s0006-3495(99)77214-0 9876159; PubMed Central PMCID: PMC1302536.

46. Leblanc OH Jr. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone. J Membr Biol. 1971;4(1):227–51. Epub 1971/12/01. doi: 10.1007/BF02431973 24174241.

47. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem. 2006;281(49):37972–9. Epub 2006/09/28. doi: 10.1074/jbc.M606059200 17003040.

48. Bopp SK, Lettieri T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol. 2008;8:8. Epub 2008/06/03. doi: 10.1186/1471-2210-8-8 18513395; PubMed Central PMCID: PMC2438350.

49. Banasiak D, Barnetson AR, Odell RA, Mameghan H, Russell PJ. Comparison between the clonogenic, MTT, and SRB assays for determining radiosensitivity in a panel of human bladder cancer cell lines and a ureteral cell line. Radiat Oncol Investig. 1999;7(2):77–85. Epub 1999/05/20. doi: 10.1002/(SICI)1520-6823(1999)7:2<77::AID-ROI3>3.0.CO;2-M 10333248.

50. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82(13):1107–12. Epub 1990/07/04. doi: 10.1093/jnci/82.13.1107 2359136.

51. Sack M, Alili L, Karaman E, Das S, Gupta A, Seal S, et al. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles—a novel aspect in cancer therapy. Mol Cancer Ther. 2014;13(7):1740–9. Epub 2014/05/16. doi: 10.1158/1535-7163.MCT-13-0950 24825856.

52. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46(16):2736–8. Epub 2010/04/07. doi: 10.1039/b922024k 20369166; PubMed Central PMCID: PMC3038687.

53. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29(18):2705–9. Epub 2008/04/09. doi: 10.1016/j.biomaterials.2008.03.014 18395249; PubMed Central PMCID: PMC2396488.

54. Lyles RH, Poindexter C, Evans A, Brown M, Cooper CR. Nonlinear model-based estimates of IC(50) for studies involving continuous therapeutic dose-response data. Contemp Clin Trials. 2008;29(6):878–86. Epub 2008/06/28. doi: 10.1016/j.cct.2008.05.009 18582601; PubMed Central PMCID: PMC2586183.

55. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25(3):158–70. Epub 2014/12/17. doi: 10.1016/j.tcb.2014.11.002 25499735; PubMed Central PMCID: PMC5576887.

56. Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777(9):1092–7. Epub 2008/06/04. doi: 10.1016/j.bbabio.2008.05.001 18519024; PubMed Central PMCID: PMC3809017.

57. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56. Epub 2006/10/04. doi: 10.1146/annurev.pharmtox.47.120505.105110 17014364.

58. Yang J, Gupta V, Carroll KS, Liebler DC. Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun. 2014;5:4776. Epub 2014/09/02. doi: 10.1038/ncomms5776 25175731; PubMed Central PMCID: PMC4167403.

59. Jones DP, Sies H. The Redox Code. Antioxid Redox Signal. 2015;23(9):734–46. Epub 2015/04/22. doi: 10.1089/ars.2015.6247 25891126; PubMed Central PMCID: PMC4580308.

60. Baty JW, Hampton MB, Winterbourn CC. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem J. 2005;389(Pt 3):785–95. Epub 2005/04/02. doi: 10.1042/BJ20050337 15801906; PubMed Central PMCID: PMC1180729.

61. Hashimoto M, Saito N, Ohta H, Yamamoto K, Tashiro A, Nakazawa K, et al. Inhibition of ubiquitin-specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiol Rep. 2019;7(14):e14193. Epub 2019/07/30. doi: 10.14814/phy2.14193 31353872; PubMed Central PMCID: PMC6661303.

62. Chen XY, Ren HH, Wang D, Chen Y, Qu CJ, Pan ZH, et al. Isoliquiritigenin Induces Mitochondrial Dysfunction and Apoptosis by Inhibiting mitoNEET in a Reactive Oxygen Species-Dependent Manner in A375 Human Melanoma Cells. Oxid Med Cell Longev. 2019;2019:9817576. Epub 2019/02/26. doi: 10.1155/2019/9817576 30805086; PubMed Central PMCID: PMC6360568.

63. Liu ZR, Sun LZ, Jia TH, Jia DF. beta-Aescin shows potent antiproliferative activity in osteosarcoma cells by inducing autophagy, ROS generation and mitochondrial membrane potential loss. J BUON. 2017;22(6):1582–6. Epub 2018/01/15. 29332356.

64. Zhang BB, Wang DG, Guo FF, Xuan C. Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer. 2015;14(1):19–23. Epub 2014/10/01. doi: 10.1007/s10689-014-9757-9 25266577.

65. Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 2003;10(6):709–17. Epub 2003/05/23. doi: 10.1038/sj.cdd.4401231 12761579.

66. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ. Redox Homeostasis and Mitochondrial Dynamics. Cell Metab. 2015;22(2):207–18. Epub 2015/07/15. doi: 10.1016/j.cmet.2015.06.006 26166745.

67. Pal HC, Prasad R, Katiyar SK. Cryptolepine inhibits melanoma cell growth through coordinated changes in mitochondrial biogenesis, dynamics and metabolic tumor suppressor AMPKalpha1/2-LKB1. Sci Rep. 2017;7(1):1498. Epub 2017/05/06. doi: 10.1038/s41598-017-01659-7 PubMed Central PMCID: PMC5431443. 28473727

68. Pletjushkina OY, Lyamzaev KG, Popova EN, Nepryakhina OK, Ivanova OY, Domnina LV, et al. Effect of oxidative stress on dynamics of mitochondrial reticulum. Biochim Biophys Acta. 2006;1757(5–6):518–24. Epub 2006/07/11. doi: 10.1016/j.bbabio.2006.03.018 16829229.

69. Ralser M, Wamelink MM, Struys EA, Joppich C, Krobitsch S, Jakobs C, et al. A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A. 2008;105(46):17807–11. Epub 2008/11/14. doi: 10.1073/pnas.0803090105 19004802; PubMed Central PMCID: PMC2584745.

70. Ma X, Jin M, Cai Y, Xia H, Long K, Liu J, et al. Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem Biol. 2011;18(11):1474–81. Epub 2011/11/29. doi: 10.1016/j.chembiol.2011.08.009 22118681; PubMed Central PMCID: PMC3225892.

71. Zick M, Rabl R, Reichert AS. Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2009;1793(1):5–19. Epub 2008/07/16. doi: 10.1016/j.bbamcr.2008.06.013 18620004.

72. Beckman JS, Minor RL Jr., White CW, Repine JE, Rosen GM, Freeman BA. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem. 1988;263(14):6884–92. Epub 1988/05/15. 3129432.

73. Chaiswing L, St Clair WH, St Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal. 2018;29(13):1237–72. Epub 2018/01/13. doi: 10.1089/ars.2017.7485 29325444; PubMed Central PMCID: PMC6157438.

74. Mahaseth T, Kuzminov A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat Res. 2017;773:274–81. Epub 2017/09/21. doi: 10.1016/j.mrrev.2016.08.006 28927535; PubMed Central PMCID: PMC5607474.

75. Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6. Epub 2006/09/09. doi: 10.1016/j.ccr.2006.08.015 16959608.

76. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013;3:292. Epub 2013/12/19. doi: 10.3389/fonc.2013.00292 24350057; PubMed Central PMCID: PMC3844930.

77. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931–47. Epub 2013/11/30. doi: 10.1038/nrd4002 24287781.

78. Ansenberger-Fricano K, Ganini D, Mao M, Chatterjee S, Dallas S, Mason RP, et al. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med. 2013;54:116–24. Epub 2012/09/18. doi: 10.1016/j.freeradbiomed.2012.08.573 22982047; PubMed Central PMCID: PMC4155036.

79. Reisz JA, Wither MJ, Dzieciatkowska M, Nemkov T, Issaian A, Yoshida T, et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood. 2016;128(12):e32–42. Epub 2016/07/14. doi: 10.1182/blood-2016-05-714816 27405778.

80. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. 2018;128(9):3716–26. Epub 2018/08/21. doi: 10.1172/JCI120849 30124471; PubMed Central PMCID: PMC6118589.

81. Chen C, Turnbull DM, Reeve AK. Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? Biology (Basel). 2019;8(2). Epub 2019/05/15. doi: 10.3390/biology8020038 31083583; PubMed Central PMCID: PMC6627981.

82. Kiriyama Y, Nochi H. Intra- and Intercellular Quality Control Mechanisms of Mitochondria. Cells. 2017;7(1). Epub 2017/12/27. doi: 10.3390/cells7010001 29278362; PubMed Central PMCID: PMC5789274.

83. Jana SK, Banerjee P, Das S, Seal S, Chaudhury KJJoNR. Redox-active nanoceria depolarize mitochondrial membrane of human colon cancer cells. 2014;16(6):2441. doi: 10.1007/s11051-014-2441-z

84. Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053. Epub 2015/02/06. doi: 10.1038/ncomms7053 25651975; PubMed Central PMCID: PMC4319569.

85. Fan X, Hussien R, Brooks GA. H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radic Biol Med. 2010;49(11):1646–54. Epub 2010/08/31. doi: 10.1016/j.freeradbiomed.2010.08.024 20801212; PubMed Central PMCID: PMC2970628.

86. Nebigil CG, Desaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front Pharmacol. 2018;9:1262. Epub 2018/11/30. doi: 10.3389/fphar.2018.01262 30483123; PubMed Central PMCID: PMC6240592.

87. Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. Environ Toxicol Pharmacol. 2014;37(1):118–33. Epub 2013/12/11. doi: 10.1016/j.etap.2013.08.015 24322620.


Článek vyšel v časopise

PLOS One


2020 Číslo 1