Can a semi-quantitative method replace the current quantitative method for the annual screening of microalbuminuria in patients with diabetes? Diagnostic accuracy and cost-saving analysis considering the potential health burden

Autoři: Yaerim Kim aff001;  Seokwoo Park aff002;  Myung-Hee Kim aff005;  Sang Hoon Song aff006;  Won Mok Lee aff007;  Hye Soon Kim aff008;  Kyubok Jin aff001;  Seungyeup Han aff001;  Yong Chul Kim aff002;  Seung Seok Han aff002;  Hajeong Lee aff002;  Jung Pyo Lee aff002;  Kwon Wook Joo aff002;  Chun Soo Lim aff002;  Yon Su Kim aff002;  Dong Ki Kim aff002
Působiště autorů: Division of Nephrology, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea aff001;  Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea aff002;  Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea aff003;  Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea aff004;  Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do, Korea aff005;  Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea aff006;  Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Korea aff007;  Division of Endocrinology and Metabolism, Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea aff008;  Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea aff009;  Division of Nephrology, Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea aff010
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227694



Diabetes is a global epidemic, and the high cost of annually and quantitatively measuring urine albumin excretion using the turbidimetric immunoassay is challenging. We aimed to determine whether a semi-quantitative urinary albumin-creatinine ratio test could be used as a screening tool for microalbuminuria in diabetic patients.


We assessed the diagnostic accuracy of the semi-quantitative method. The costs of false results in the semi-quantitative method were calculated based on the annual probability of disease progression analyzed through a systematic literature review and meta-analysis. The pooled long-term cost-saving effect of the semi-quantitative method compared with the quantitative test was assessed using a Markov model simulating a long-term clinical setting. Diagnostic accuracy and the cost-saving effect were also validated in an independent external cohort.


Compared with the quantitative test, the semi-quantitative method had sensitivities of 93.5% and 81.3% and specificities of 61.4% and 63.1% in the overall sample of diabetic patients (n = 1,881) and in diabetic patients with eGFR ≥60 ml/min/1.73 m2 and a negative dipstick test (n = 1,110), respectively. After adjusting for direct and indirect medical costs, including the risk of disease progression, which was adjusted by the meta-analyzed hazard ratio for clinical outcomes, it was determined that using the semi-quantitative method could save 439.4 USD per person for 10 years. Even after adjusting the result to the external validation cohort, 339.6 USD could be saved for one diabetic patient for 10 years.


The semi-quantitative method could be an appropriate screening tool for albuminuria in diabetic patients. Moreover, it can minimize the testing time and inconvenience and significantly reduce national health costs.

Klíčová slova:

Albumins – Cardiovascular diseases – Creatinine – Diabetes mellitus – Health economics – Chronic kidney disease – Metaanalysis – Urine


1. Jin DC, Yun SR, Lee SW, Han SW, Kim W, Park J, et al. Current characteristics of dialysis therapy in Korea: 2016 registry data focusing on diabetic patients. Kidney Res Clin Pract. 2018;37(1):20–9. doi: 10.23876/j.krcp.2018.37.1.20 29629274

2. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34. doi: 10.1056/NEJM199807233390404 9673301

3. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. Jama. 2011;305(24):2532–9. doi: 10.1001/jama.2011.861 21693741

4. Brancati FL, Whelton PK, Randall BL, Neaton JD, Stamler J, Klag MJ. Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Multiple Risk Factor Intervention Trial. Jama. 1997;278(23):2069–74. 9403420

5. Standards of medical care in diabetes—2013. Diabetes Care. 2013;36 Suppl 1:S11–66.

6. Zaharie F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

7. Price CP. Point of care testing. Bmj. 2001;322(7297):1285–8. doi: 10.1136/bmj.322.7297.1285 11375233

8. Nichols JH, Christenson RH, Clarke W, Gronowski A, Hammett-Stabler CA, Jacobs E, et al. Executive summary. The National Academy of Clinical Biochemistry Laboratory Medicine Practice Guideline: evidence-based practice for point-of-care testing. Clin Chim Acta. 2007;379(1–2):14–28; discussion 9–30. doi: 10.1016/j.cca.2006.12.025 17270169

9. Gialamas A, St John A, Laurence CO, Bubner TK. Point-of-care testing for patients with diabetes, hyperlipidaemia or coagulation disorders in the general practice setting: a systematic review. Fam Pract. 2010;27(1):17–24. doi: 10.1093/fampra/cmp084 19969524

10. Laurence CO, Moss JR, Briggs NE, Beilby JJ. The cost-effectiveness of point of care testing in a general practice setting: results from a randomised controlled trial. BMC Health Serv Res. 2010;10:165. doi: 10.1186/1472-6963-10-165 20546629

11. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13–s28. doi: 10.2337/dc19-S002 30559228

12. Tholen DW, Kallner A, Kennedy JW, Krouwer JS, Meier K. Evaluation of precision performance of quantitative measurement methods; approved guideline—second edition. Evaluation. 2004;24(25).

13. Yokoyama H, Araki S, Haneda M, Matsushima M, Kawai K, Hirao K, et al. Chronic kidney disease categories and renal-cardiovascular outcomes in type 2 diabetes without prevalent cardiovascular disease: a prospective cohort study (JDDM25). Diabetologia. 2012;55(7):1911–8. doi: 10.1007/s00125-012-2536-y 22476921

14. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20(8):1813–21. doi: 10.1681/ASN.2008121270 19443635

15. Lee T, Biddle AK, Lionaki S, Derebail VK, Barbour SJ, Tannous S, et al. Personalized prophylactic anticoagulation decision analysis in patients with membranous nephropathy. Kidney Int. 2014;85(6):1412–20. doi: 10.1038/ki.2013.476 24336031

16. Lee J, Lee JS, Park SH, Shin SA, Kim K. Cohort Profile: The National Health Insurance Service-National Sample Cohort (NHIS-NSC), South Korea. Int J Epidemiol. 2017;46(2):e15. doi: 10.1093/ije/dyv319 26822938

17. Olson M, Bailey MJ. Positive time preference. Journal of Political Economy. 1981;89(1):1–25.

18. Ahn JH, Kim YH, Shin SJ, JY P. Cost of Medical Decision Making—Asian Joint Research on Effectiveness. National Evidence-based Healthcare Collaborating Agency; 2012.

19. Kwon S, Lee T-j, Kim C-y. Republic of Korea health system review. Asia Pac. Observatory Public Health Syst. Policies. 2015;5(4).

20. Cheol Seong S, Kim YY, Khang YH, Heon Park J, Kang HJ, Lee H, et al. Data Resource Profile: The National Health Information Database of the National Health Insurance Service in South Korea. Int J Epidemiol. 2017;46(3):799–800. doi: 10.1093/ije/dyw253 27794523

21. Organization WH. Global report on diabetes: World Health Organization; 2016. doi: 10.2337/db15-0956

22. (NCD-RisC) NRFC. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30. doi: 10.1016/S0140-6736(16)00618-8 27061677

23. Le Floch JP, Marre M, Rodier M, Passa P. Interest of Clinitek Microalbumin in screening for microalbuminuria: results of a multicentre study in 302 diabetic patients. Diabetes Metab. 2001;27(1):36–9. 11240444

24. Croal BL, Mutch WJ, Clark BM, Dickie A, Church J, Noble D, et al. The clinical application of a urine albumin:creatinine ratio point-of-care device. Clin Chim Acta. 2001;307(1–2):15–21. doi: 10.1016/s0009-8981(01)00450-8 11369331

25. Meinhardt U, Ammann RA, Fluck C, Diem P, Mullis PE. Microalbuminuria in diabetes mellitus: efficacy of a new screening method in comparison with timed overnight urine collection. J Diabetes Complications. 2003;17(5):254–7. doi: 10.1016/s1056-8727(02)00180-0 12954153

26. Graziani MS, Gambaro G, Mantovani L, Sorio A, Yabarek T, Abaterusso C, et al. Diagnostic accuracy of a reagent strip for assessing urinary albumin excretion in the general population. Nephrol Dial Transplant. 2009;24(5):1490–4. doi: 10.1093/ndt/gfn639 19037085

27. McTaggart MP, Price CP, Pinnock RG, Stevens PE, Newall RG, Lamb EJ. The diagnostic accuracy of a urine albumin-creatinine ratio point-of-care test for detection of albuminuria in primary care. Am J Kidney Dis. 2012;60(5):787–94. doi: 10.1053/j.ajkd.2012.05.009 22721931

28. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. Jama. 2001;286(4):421–6. doi: 10.1001/jama.286.4.421 11466120

29. Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med. 2000;160(8):1093–100. doi: 10.1001/archinte.160.8.1093 10789601

30. O'Hare AM, Hailpern SM, Pavkov ME, Rios-Burrows N, Gupta I, Maynard C, et al. Prognostic implications of the urinary albumin to creatinine ratio in veterans of different ages with diabetes. Arch Intern Med. 2010;170(11):930–6. doi: 10.1001/archinternmed.2010.129 20548004

31. Yuyun MF, Khaw KT, Luben R, Welch A, Bingham S, Day NE, et al. Microalbuminuria independently predicts all-cause and cardiovascular mortality in a British population: The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) population study. Int J Epidemiol. 2004;33(1):189–98. doi: 10.1093/ije/dyh008 15075168

32. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110(1):32–5. doi: 10.1161/01.CIR.0000133312.96477.48 15210602

33. Berhane AM, Weil EJ, Knowler WC, Nelson RG, Hanson RL. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin J Am Soc Nephrol. 2011;6(10):2444–51. doi: 10.2215/CJN.00580111 21852671

34. Ritte R, Luke J, Nelson C, Brown A, O'Dea K, Jenkins A, et al. Clinical outcomes associated with albuminuria in central Australia: a cohort study. BMC Nephrol. 2016;17(1):113. doi: 10.1186/s12882-016-0328-1 27495237

35. Tong PC, Kong AP, So WY, Yang X, Ng MC, Ho CS, et al. Interactive effect of retinopathy and macroalbuminuria on all-cause mortality, cardiovascular and renal end points in Chinese patients with Type 2 diabetes mellitus. Diabet Med. 2007;24(7):741–6. doi: 10.1111/j.1464-5491.2007.02145.x 17403120

36. Targher G, Zoppini G, Chonchol M, Negri C, Stoico V, Perrone F, et al. Glomerular filtration rate, albuminuria and risk of cardiovascular and all-cause mortality in type 2 diabetic individuals. Nutr Metab Cardiovasc Dis. 2011;21(4):294–301. doi: 10.1016/j.numecd.2009.10.002 20096544

37. Konta T, Kudo K, Sato H, Ichikawa K, Ikeda A, Suzuki K, et al. Albuminuria is an independent predictor of all-cause and cardiovascular mortality in the Japanese population: the Takahata study. Clin Exp Nephrol. 2013;17(6):805–10. doi: 10.1007/s10157-013-0770-3 23345069

38. Svensson MK, Cederholm J, Eliasson B, Zethelius B, Gudbjornsdottir S. Albuminuria and renal function as predictors of cardiovascular events and mortality in a general population of patients with type 2 diabetes: a nationwide observational study from the Swedish National Diabetes Register. Diab Vasc Dis Res. 2013;10(6):520–9. doi: 10.1177/1479164113500798 24002670

39. Hsieh YT, Kuo JF, Su SL, Chen JF, Chen HC, Hsieh MC. Subnormal Estimated Glomerular Filtration Rate Strongly Predict Incident Cardiovascular Events in Type 2 Diabetic Chinese Population With Normoalbuminuria. Medicine (Baltimore). 2016;95(2):e2200.

40. Wada T, Haneda M, Furuichi K, Babazono T, Yokoyama H, Iseki K, et al. Clinical impact of albuminuria and glomerular filtration rate on renal and cardiovascular events, and all-cause mortality in Japanese patients with type 2 diabetes. Clin Exp Nephrol. 2014;18(4):613–20. doi: 10.1007/s10157-013-0879-4 24132561

41. So WY, Kong AP, Ma RC, Ozaki R, Szeto CC, Chan NN, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29(9):2046–52. doi: 10.2337/dc06-0248 16936151

42. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32. doi: 10.1046/j.1523-1755.2003.00712.x 12472787

43. Ward A, Alvarez P, Vo L, Martin S. Direct medical costs of complications of diabetes in the United States: estimates for event-year and annual state costs (USD 2012). J Med Econ. 2014;17(3):176–83. doi: 10.3111/13696998.2014.882843 24410011

44. Vupputuri S, Kimes TM, Calloway MO, Christian JB, Bruhn D, Martin AA, et al. The economic burden of progressive chronic kidney disease among patients with type 2 diabetes. J Diabetes Complications. 2014;28(1):10–6. doi: 10.1016/j.jdiacomp.2013.09.014 24211091

45. Honeycutt AA, Segel JE, Zhuo X, Hoerger TJ, Imai K, Williams D. Medical costs of CKD in the Medicare population. J Am Soc Nephrol. 2013;24(9):1478–83. doi: 10.1681/ASN.2012040392 23907508

Článek vyšel v časopise


2020 Číslo 1