Parasites modulate the gut-microbiome in insects: A proof-of-concept study

Autoři: Brian L. Fredensborg aff001;  Inga Fossdal í Kálvalíð aff001;  Thor B. Johannesen aff002;  C. Rune Stensvold aff002;  Henrik V. Nielsen aff002;  Christian M. O. Kapel aff001
Působiště autorů: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark aff001;  Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article


Host-parasite interactions may be modulated by host- or parasite-associated microbes, but the role of these are often overlooked. Particularly for parasites with intestinal stages (either larval or adult), the host gut microbiome may play a key role for parasite establishment; moreover, the microbiome may change in response to invading parasites. Hypothesis testing at the organismal level may be hampered, particularly in mammalian definitive hosts, by ethical, logistical, and economical restrictions. Thus, invertebrates naturally serving as intermediate hosts to parasites with complex life cycles may inform the development of mammalian models as an early-stage host-parasite model. In addition, several important pathogens are vectored by insects, and insect gut microbiome-pathogen interactions may provide essential base-line knowledge, which may be used to control vectorborne pathogens. Here, we used the grain beetle, Tenebrio molitor, a host of the tapeworm Hymenolepis diminuta, to explore interactions between infection status and resident gut microbiota at two pre-determined time points (day two and seven) post infection. Using 16S/18S microbial profiling, we measured key parameters of the composition, relative abundance, and diversity of the host gut bacteriome and mycobiome. In addition, we quantified the systemic beetle immune response to infection by Phenoloxidase activity and hemocyte abundance. We found significant changes in the gut bacteriome and mycobiome in relation to infection status and beetle age. Thus, the relative abundance of Proteobacteria was significantly higher in the gut of infected beetles and driven mostly by an increased abundance of Acinetobacter. In addition, the mycobiome was less abundant in infected beetles but maintained higher Shannon diversity in infected compared with non-infected beetles. Beetles treated with a broad-spectrum antibiotic (Tetracycline) exhibited significantly reduced parasite establishment compared with the untreated control group, indicating that the host microbiome may greatly influence hatching of eggs and subsequent establishment of H. diminuta larvae. Our results suggest that experimental work using invertebrates may provide a platform for explorative studies of host-parasite-microbe interactions and their underlying mechanisms.

Klíčová slova:

Acinetobacter infections – Beetles – Enterobacter infections – Gut bacteria – Host-pathogen interactions – Insect vectors – Microbiome – Parasitic diseases


1. Nolwenn DM, Poulin R, Thomas F. Biological warfare: Microorganisms as drivers of host parasite interactions. Infect Gen Evol. 2015;34: 251–9.

2. Rapin A, Harris NL. Helminth–Bacterial Interactions: Cause and Consequence. Trends Immunol. 2018;39: 724–733. doi: 10.1016/ 29941203

3. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148: 1258–1270. doi: 10.1016/j.cell.2012.01.035 22424233

4. Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: Shaping local and systemic immune responses. Sem Immunol. 2012; 58–66. doi: 10.1016/j.smim.2011.11.008 22178452

5. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunol. 2013;14: 685–690.

6. Hjorth MF, Blædel T, Bendtsen LQ, Lorenzen JK, Holm JB, Kiilerich P, et al. Int J Obes. 2019;43: 149–157. doi: 10.1038/s41366-018-0093-2

7. Danneskiold-Samsøe NB, de Freitas Queiroz Barros HD, Santos R, Bicas JL, Cazarin CBB, Madsen L, et al. Interplay between food and gut microbiota in health and disease. Food Res Int. 2019;115: 23–31. doi: 10.1016/j.foodres.2018.07.043 30599936

8. Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther. 2017;00: 1–12. doi: 10.1111/apt.14173

9. He Q, Gao Y, Jie Z, Yu X, Laursen JM, Xiao L, et al. Two distinct metacommunities characterize the gut microbiota in Crohn’s disease patients. GigaScience 2017;6:1–11. doi: 10.1093/gigascience/gix050 28655159

10. Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, et al. Microbial network disturbances in relapsing refractory Crohn’s disease. Nat Med. 2017. doi: 10.1038/s41591-018-0308-z 30664783

11. Qin JJ, Li YR, Cai ZM, Li SH, Zhu JF, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490: 55–60. doi: 10.1038/nature11450 23023125

12. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Comm. 2017; 8: 845; doi: 10.1038/s41467-017-00900-1

13. Loke P, Lim YAL. Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunol. 2015;37: 314–323. doi: 10.1111/pim.12193 25869420

14. McKenney EA, Williamson L, Yoder AD, Rawls JF, Bilbo SD, Parker W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes. 2015;6: 182–193; doi: 10.1080/19490976.2015.1047128 25942385

15. Parfrey LW, Jirku M, Sima R, Jalovecka M, Sak B, Grigore K, et al. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLOS ONE. 2015;12: e0182205.

16. Barash NR, Maloney JG, Singer SM, Dawson SC. Giardia alters commensal microbial diversity throughout the murine gut. Infect Immun. 2017;85: e00948–16; doi: 10.1128/IAI.00948-16 28396324

17. Aivelo T, Norberg A. Parasite–microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol. 2018;87: 438–447. doi: 10.1111/1365-2656.12708 28555881

18. Stensvold CR, van der Giezen M. Associations between gut microbiota and common luminal intestinal parasites. Trends Parasitol. 2018;34: 369–377. doi: 10.1016/ 29567298

19. Rodriguez-Ruano SM, Skochova V, Rego ROM, Schmidt JO, Roachell W, Hypsa V, et al. Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology. Front Microbiol. 2018;9: 1167. doi: 10.3389/fmicb.2018.01167 29951039

20. Reynolds LA, Finley BB, Maizels RM. Cohabitation in the intestine: interactions between helminth parasites, bacterial microbiota and host immunity. J Immunol. 2015;195: 4059–4066. doi: 10.4049/jimmunol.1501432 26477048

21. Zais MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43: 998–1010. doi: 10.1016/j.immuni.2015.09.012 26522986

22. Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity. Muc Immunol. 2018;11: 1039–1046. doi: 10.1038/s41385-018-0008-5 29453411

23. Yordanova IA, Zakovic S, Rausch S, Costa G, Levashina E, Hartmann S. Micromanaging immunity in the murine host vs. the mosquito vector: microbiota-dependent immune responses to intestinal parasites. Front Cell Infec Microbiol 2018;8: 308. doi: 10.3389/fcimb.2018.00308 30234029

24. Hayes KS, Bancroft AJ, Goldrick M, Portsmouth C, Roberts IS, Grencis RK. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science. 2010;328: 1391–4. doi: 10.1126/science.1187703 20538949

25. Villarino NF, LeCleir GR, Denny JE, Dearth SP, Harding CL, Sloan SS, et al. Composition of the gut microbiota modulates the severity of malaria. Proc Nat Acad Sci USA. 2016;113: 2235–2240. doi: 10.1073/pnas.1504887113 26858424

26. Knutie SA, Wilkinson CL, Kohl KD, Rohr JR. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat Commun. 2017;8: 86. doi: 10.1038/s41467-017-00119-0 28729558

27. Louradour I, Monteiro CC, Inbar E, Ghosh K, Merkhofer R, Lawyer P, et al. The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol. 2017;19: e12755.

28. Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBIO. 2017;8: e01121–16. doi: 10.1128/mBio.01121-16 28096483

29. Jupatanakul N, Sim S, Dimopoulos G. The Insect Microbiome Modulates Vector Competence for Arboviruses. Viruses-Basel. 2014;6: 4294–4313. doi: 10.3390/v6114294 25393895

30. Heylen M, Ruyssers NE, Gielis EM, Vanhomwegen E, Pelckmans PA, Moreels TG, et al. Of worms, mice and man: An overview of experimental and clinical helminth-based therapy for inflammatory bowel disease. Pharmacol Therapeut. 2014;143: 153–167; doi: 10.1016/j.pharmthera.2014.02.011

31. Fleming JO, Weinstock JV. Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Par Immunol. 2015;37: 277–292. doi: 10.1111/pim.12175 25600983

32. Russell WMS, Burch RL. The Principles of Humane Experimental Technique. Methuen 1959;London, U.K.

33. Scully LR, Bidochka MJ. Developing insect models for the study of current and emerging human pathogens. FEMS Microbiol Lett. 2006;263: 1–9. doi: 10.1111/j.1574-6968.2006.00388.x 16958844

34. Shostak AW. Hymenolepis diminuta infections in Tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: A review and meta-analysis. J Parasitol. 2014;100: 46–58. doi: 10.1645/13-347.1 23952690

35. Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2019;4: 20–34. doi: 10.1038/s41564-018-0214-7 30150735

36. Saldana MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Os Cruz. 2017;112: 81–93. doi: 10.1590/0074-02760160373 28177042

37. Anderson KV, Jürgens G, Nüsslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell. 1985;42: 779–789. doi: 10.1016/0092-8674(85)90274-0 3931918

38. Johnston PR, Makarova O, Rolff J. Inducible Defenses Stay Up Late: Temporal Patterns of Immune Gene Expression in Tenebrio molitor. G3. 2014;4: 947–955.

39. Kostic AD, Howitt MR, Garrett WS. Exploring host-microbiota interactions in animal models and humans. Gene Dev. 2013;27: 701–718. doi: 10.1101/gad.212522.112 23592793

40. Charroux B, Royet J. Gut-microbiota interactions in non-mammals: What can we learn from Drosophila? Semin Immunol. 2012;24: 17–24. doi: 10.1016/j.smim.2011.11.003 22284578

41. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol. 2013;11: 615–626. doi: 10.1038/nrmicro3074 23893105

42. Engel P, Moran NA. The gut microbiota of insects–diversity in structure and Function. FEMS Microbiol Rev. 2013;37: 699–735. doi: 10.1111/1574-6976.12025 23692388

43. Douglas AE. The molecular basis of bacterial-insect symbiosis. J Mol Biol. 2014;426: 3830–7. doi: 10.1016/j.jmb.2014.04.005 24735869

44. Lee J-H, Lee K-A, Lee W-J. Microbiota, gut physiology, and insect immunity. Adv Insect Physiol. 2017;52: 111–138.

45. Lethbridge RC. The hatching of Hymenolepis diminuta eggs and penetration of the hexacanths in Tenebrio molitor beetles. Parasitol.1971;62: 445–456.

46. Lethbridge RC. The biology of the oncosphere of cyclophyllidean cestodes. Helminthol Abstr. 1980;49: 59–72.

47. Dhakal S, Buss SM, Cassidy EJ, Meyling NV, Fredensborg BL. Establishment success of the beetle tapeworm Hymenolepis diminuta depends on dose and host body condition. Insects. 2018;9: 14. doi: 10.3390/insects9010014

48. Dhakal S, Meyling NV, Williams AR, Pena M, Muller-Harvey I, Fryganas C, et al. Efficacy of condensed tannins against larval Hymenolepis diminuta (Cestoda) in the intermediate host Tenebrio molitor (Coleoptera). Vet Parasitol. 2015;207: 49–55. doi: 10.1016/j.vetpar.2014.11.006 25468673

49. Woolsey I, Fredensborg BL, Jensen PM, Kapel CMO, Meyling NV. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. Parasitol Res. 2015;114: 2777–2780. doi: 10.1007/s00436-015-4477-0 25895063

50. Sulima A, Bien J, Savijoki K, Nareaho A, Salamantin R, Conn DB, et al. Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta. Parasite Vector. 2017;10: 577.

51. Sulima A, Savijoki K, Bien J, Nareaho A, Salamantin R, Conn DB, et al. Comparative proteomic analysis of Hymenolepis diminuta cysticercoid and adult stages. Front Microbiol. 2018;8: 2672. doi: 10.3389/fmicb.2017.02672 29379475

52. Hundley DF, Berntzen AK. Collection, sterilization, and storage of Hymenolepis diminuta eggs. J Parasitol. 1969;55: 1095–6.

53. Berntzen AK, Voge M. In vitro Hatching of Oncospheres of Four Hymenolepidid Cestodes. J Parasitol. 1965;51: 235–242. 14275214

54. Ring HC, Thorsen J, Saunte DM, Lilje B, Bay L, Riis PT, et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. 2017. JAMA Dermatol. doi: 10.1001/jamadermatol.2017.0904 28538949

55. Lear R, O'Leary M, O'Brien AL, Holt CC, Stensvold CR, van der Giezen M, et al. Nutrients. 2019;11: E1063. doi: 10.3390/nu11051063 31085979

56. Haine ER, Pollitt LC, Moret Y, Siva-Jothy MT, Rolff J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J Insect Phys. 2008;54: 1090–1097.

57. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017;548: 43–51. doi: 10.1038/nature23292 28770836

58. Broderick NA. Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila–microbe interactions. Phil Trans R Soc B. 2016;371: 20150295. doi: 10.1098/rstb.2015.0295 27160597

59. Guan G, Wang H, Chen S, Liu G, Xiong X, Tan B et al. Dietary Chitosan Supplementation Increases Microbial Diversity and Attenuates the Severity of Citrobacter rodentium Infection in Mice. Mediators Inflamm 2016;9236196. doi: 10.1155/2016/9236196 27761062

60. Vejzagić N, Adelfio R, Keiser J, Kringel H, Thamsborg SM, Kapel CMO. Bacteria-induced egg hatching differs for Trichuris muris and Trichuris suis. Parasit Vectors 2015; 8: 371. doi: 10.1186/s13071-015-0986-z 26174801

61. Perry RN, Clarke AJ. Hatching mechanisms of nematodes. Parasitol. 1981;83: 435–449.

62. Holmes SD, Fairweather I. Hymenolepis diminuta: The mechanism of egg hatching. Parasitol. 1982;85: 237–250.

63. Houser BB, Burns WC. Experimental Infection of Gnotobiotic Tenebrio molitor and White Rats with Hymenolepis diminuta (Cestoda: Cyclophyllidea). J Parasitol. 1968;54: 69–73. 5641055

64. Meister S, Agianian B, Turlure F, Relogio A, Morlais I, Kafatos FC, et al. Anopheles gambiae PGRPLC-mediated defence against bacteria modulates infections with malaria parasites. PLoS Path. 2009;5: e1000542. doi: 10.1371/journal.ppat.1000542 19662170

65. Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21: 568–572. doi: 10.1016/ 16226491

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden