Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry


Autoři: Shih‐Ming Chen aff001;  Chia‐En Lin aff001;  Hung-Hsiang Chen aff001;  Yu-Fan Cheng aff001;  Hui-Wen Cheng aff001;  Kazuhiro Imai aff002
Působiště autorů: School of Pharmacy, Taipei Medical University, Taipei, Taiwan aff001;  Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227838

Souhrn

Prednisolone is involved in glucose homeostasis and has been used for treatment for aristolochic acid (AA) nephropathy (AAN), but its effect on glycolysis in kidney has not yet been clarified. This study aims to investigate the effect in terms of altered proteins after prednisolone treatment in a mice model of AAN using a proteomics technique. The six-week C3H/He female mice were administrated AA (0.5 mg/kg/day) for 56 days. AA+P group mice were then given prednisolone (2 mg/kg/day) via oral gavage for the next 14 days, and AA group mice were fed water instead. The tubulointerstitial damage was improved after prednisolone treatment comparing to that of AA group. Kidney homogenates were harvested to perform the proteomics analysis with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method (FD-LC-MS/MS). On the other hand, urinary methylglyoxal and D-lactate levels were determined by high performance liquid chromatography with fluorescence detection. There were 47 altered peaks and 39 corresponding proteins on day 14 among the groups, and the glycolysis-related proteins, especially glyoxalase 1 (GLO1), fructose-bisphosphate aldolase B (aldolase B), and triosephosphate isomerase (TPI), decreased in the AA+P group. Meanwhile, prednisolone decreased the urinary amount of methylglyoxal (AA+P: 2.004 ± 0.301 μg vs. AA: 2.741 ± 0.630 μg, p < 0.05), which was accompanied with decrease in urinary amount of D-lactate (AA+P: 54.07 ± 5.45 μmol vs. AA: 86.09 ± 8.44 μmol, p < 0.05). Prednisolone thus alleviated inflammation and interstitial renal fibrosis. The renal protective mechanism might be associated with down-regulation of GLO1 via reducing the contents of methylglyoxal derived from glycolysis. With the aid of proteomics analysis and the determination of methylglyoxal and its metabolite-D-lactate, we have demonstrated for the first time the biochemical efficacy of prednisolone, and urinary methylglyoxal and its metabolite-D-lactate might be potential biomarkers for AAN.

Klíčová slova:

Fibrosis – Glycolysis – Kidneys – Mouse models – Proteomics – Pyruvate – TGF-beta signaling cascade – Urine


Zdroje

1. Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M, et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet. 1993;341(8842):387–91. Epub 1993/02/13. doi: 10.1016/0140-6736(93)92984-2 8094166.

2. Depierreux M, Van Damme B, Vanden Houte K, Vanherweghem JL. Pathologic aspects of a newly described nephropathy related to the prolonged use of Chinese herbs. Am J Kidney Dis. 1994;24(2):172–80. Epub 1994/08/01. doi: 10.1016/s0272-6386(12)80178-8 8048421.

3. Kumar V, Poonam, Prasad AK, Parmar VS. Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Natural product reports. 2003;20(6):565–83. Epub 2004/01/01. doi: 10.1039/b303648k 14700200.

4. Chen YY, Chung JG, Wu HC, Bau DT, Wu KY, Kao ST, et al. Aristolochic acid suppresses DNA repair and triggers oxidative DNA damage in human kidney proximal tubular cells. Oncol Rep. 2010;24(1):141–53. Epub 2010/06/02. doi: 10.3892/or_00000839 20514455.

5. Chen IH, Luo HL, Su YL, Huang CC, Chiang PH, Yu CC, et al. Aristolochic Acid Affects Upper Tract Urothelial Cancer Behavior through the MAPK Pathway. Molecules (Basel, Switzerland). 2019;24(20) Epub 2019/10/18. doi: 10.3390/molecules24203707 31619002.

6. Jadot I, Decleves AE, Nortier J, Caron N. An Integrated View of Aristolochic Acid Nephropathy: Update of the Literature. Int J Mol Sci. 2017;18(2) Epub 2017/02/02. doi: 10.3390/ijms18020297 28146082; PubMed Central PMCID: PMC5343833.

7. Vanherweghem JL, Abramowicz D, Tielemans C, Depierreux M. Effects of steroids on the progression of renal failure in chronic interstitial renal fibrosis: a pilot study in Chinese herbs nephropathy. Am J Kidney Dis. 1996;27(2):209–15. Epub 1996/02/01. doi: 10.1016/s0272-6386(96)90542-9 8659495.

8. Ma DH, Zheng FL, Su Y, Li MX, Guo MH. Influence and analysis of low-dosage steroid therapy in severe aristolochic acid nephropathy patients. Nephrology (Carlton). 2016;21(10):835–40. Epub 2015/11/27. doi: 10.1111/nep.12684 26609908.

9. Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology. 2011;335(1):2–13. doi: 10.1016/j.mce.2010.04.005 20398732.

10. Lim SS, Conn DL. The use of low-dose prednisone in the management of rheumatoid arthritis. Bull Rheum Dis. 2001;50(12):1–4. Epub 2002/10/22. 12386945.

11. Ruiz-Arruza I, Barbosa C, Ugarte A, Ruiz-Irastorza G. Comparison of high versus low-medium prednisone doses for the treatment of systemic lupus erythematosus patients with high activity at diagnosis. Autoimmun Rev. 2015;14(10):875–9. Epub 2015/06/06. doi: 10.1016/j.autrev.2015.05.011 26044819.

12. Sousa AR, Marshall RP, Warnock LC, Bolton S, Hastie A, Symon F, et al. Responsiveness to oral prednisolone in severe asthma is related to the degree of eosinophilic airway inflammation. Clin Exp Allergy. 2017;47(7):890–9. Epub 2017/05/12. doi: 10.1111/cea.12954 28493293.

13. Baudoux T, Husson C, De Prez E, Jadot I, Antoine M-H, Nortier JL, et al. CD4(+) and CD8(+) T Cells Exert Regulatory Properties During Experimental Acute Aristolochic Acid Nephropathy. Sci Rep. 2018;8(1):5334–. doi: 10.1038/s41598-018-23565-2 29593222.

14. Ichibangase T, Moriya K, Koike K, Imai K. A proteomics method revealing disease-related proteins in livers of hepatitis-infected mouse model. Journal of proteome research. 2007;6(7):2841–9. Epub 2007/06/15. doi: 10.1021/pr070094c 17559251.

15. Masuda M, Toriumi C, Santa T, Imai K. Fluorogenic derivatization reagents suitable for isolation and identification of cysteine-containing proteins utilizing high-performance liquid chromatography-tandem mass spectrometry. Analytical chemistry. 2004;76(3):728–35. Epub 2004/01/31. doi: 10.1021/ac034840i 14750869.

16. Ichibangase T, Imai K. Straightforward proteomic analysis reveals real dynamics of proteins in cells. Journal of pharmaceutical and biomedical analysis. 2014;101:31–9. Epub 2014/06/24. doi: 10.1016/j.jpba.2014.05.036 24953415.

17. Tsai PY, Chen SM, Chen HY, Li YC, Imai K, Hsu KY, et al. Proteome analysis of altered proteins in streptozotocin-induced diabetic rat kidney using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr. 2013;27(3):382–9. Epub 2012/09/14. doi: 10.1002/bmc.2803 22972526.

18. Lin CE, Chang WS, Lee JA, Chang TY, Huang YS, Hirasaki Y, et al. Proteomics analysis of altered proteins in kidney of mice with aristolochic acid nephropathy using the fluorogenic derivatization-liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr. 2018;32(3) Epub 2017/11/01. doi: 10.1002/bmc.4127 29088495.

19. Huang TC, Chen SM, Li YC, Lee JA. Urinary d-lactate levels reflect renal function in aristolochic acid-induced nephropathy in mice. Biomed Chromatogr. 2013;27(9):1100–6. Epub 2013/04/05. doi: 10.1002/bmc.2908 23553367.

20. Huang TC, Chen SM, Li YC, Lee JA. Increased renal semicarbazide-sensitive amine oxidase activity and methylglyoxal levels in aristolochic acid-induced nephrotoxicity. Life Sci. 2014;114(1):4–11. Epub 2014/08/12. doi: 10.1016/j.lfs.2014.07.034 25107330.

21. Leaback DH, Walker PG. Studies on glucosaminidase. 4. The fluorimetric assay of N-acetyl-beta-glucosaminidase. The Biochemical journal. 1961;78(1):151–6. doi: 10.1042/bj0780151 13759894.

22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

23. Espinosa-Mansilla A, Duran-Meras I, Canada FC, Marquez MP. High-performance liquid chromatographic determination of glyoxal and methylglyoxal in urine by prederivatization to lumazinic rings using in serial fast scan fluorimetric and diode array detectors. Anal Biochem. 2007;371(1):82–91. Epub 2007/09/22. doi: 10.1016/j.ab.2007.07.028 17884007.

24. Huang YS, Li YC, Tsai PY, Lin CE, Chen CM, Chen SM, et al. Accumulation of methylglyoxal and d-lactate in Pb-induced nephrotoxicity in rats. Biomed Chromatogr. 2017;31(5) Epub 2016/10/16. doi: 10.1002/bmc.3869 27741557.

25. Li YC, Tsai SH, Chen SM, Chang YM, Huang TC, Huang YP, et al. Aristolochic acid-induced accumulation of methylglyoxal and Nepsilon-(carboxymethyl)lysine: an important and novel pathway in the pathogenic mechanism for aristolochic acid nephropathy. Biochem Biophys Res Commun. 2012;423(4):832–7. Epub 2012/06/21. doi: 10.1016/j.bbrc.2012.06.049 22713464.

26. Fukushima T, Lee JA, Korenaga T, Ichihara H, Kato M, Imai K. Simultaneous determination of D-lactic acid and 3-hydroxybutyric acid in rat plasma using a column-switching HPLC with fluorescent derivatization with 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ). Biomed Chromatogr. 2001;15(3):189–95. Epub 2001/06/08. doi: 10.1002/bmc.60 11391675.

27. Lee J-A, Tsai Y-C, Chen H-Y, Wang C-C, Chen S-M, Fukushima T, et al. Fluorimetric determination of d-lactate in urine of normal and diabetic rats by column-switching high-performance liquid chromatography. Analytica Chimica Acta. 2005;534(2):185–91. https://doi.org/10.1016/j.aca.2004.11.033.

28. Zhou Y, Bian X, Fang L, He W, Dai C, Yang J. Aristolochic acid causes albuminuria by promoting mitochondrial DNA damage and dysfunction in podocyte. PLoS One. 2013;8(12):e83408–e. doi: 10.1371/journal.pone.0083408 24349506.

29. Qi X, Cai Y, Gong L, Liu L, Chen F, Xiao Y, et al. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid. Toxicol Appl Pharmacol. 2007;222(1):105–10. Epub 2007/05/25. doi: 10.1016/j.taap.2007.03.029 17521691.

30. Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011;22(6):1041–52. Epub 2011/05/07. doi: 10.1681/ASN.2010080808 21546574; PubMed Central PMCID: PMC3103724.

31. Qi H, Casalena G, Shi S, Yu L, Ebefors K, Sun Y, et al. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility. Diabetes. 2017;66(3):763–78. Epub 2016/12/03. doi: 10.2337/db16-0695 27899487; PubMed Central PMCID: PMC5319717.

32. Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. The Journal of biological chemistry. 1992;267(7):4364–9. Epub 1992/03/05. 1537826.

33. Liu J, Wang R, Desai K, Wu L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular research. 2011;92(3):494–503. Epub 2011/09/06. doi: 10.1093/cvr/cvr239 21890532.

34. Phillips SA, Thornalley PJ. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. European journal of biochemistry. 1993;212(1):101–5. Epub 1993/02/15. doi: 10.1111/j.1432-1033.1993.tb17638.x 8444148.

35. Hopper DJ, Cooper RA. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J. 1972;128(2):321–9. doi: 10.1042/bj1280321 4563643.

36. Li XB, Gu JD, Zhou QH. Review of aerobic glycolysis and its key enzymes—new targets for lung cancer therapy. Thoracic cancer. 2015;6(1):17–24. Epub 2015/08/15. doi: 10.1111/1759-7714.12148 26273330; PubMed Central PMCID: PMC4448463.

37. Sharma N, Okere IC, Brunengraber DZ, McElfresh TA, King KL, Sterk JP, et al. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J Physiol. 2005;562(Pt 2):593–603. Epub 11/18. doi: 10.1113/jphysiol.2004.075713 15550462.

38. Rabbani N, Thornalley PJ. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochemical Society transactions. 2014;42(2):425–32. Epub 2014/03/22. doi: 10.1042/BST20140018 24646255.

39. Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C. The glyoxalase pathway: the first hundred years … and beyond. Biochem J. 2013;453(1):1–15. Epub 2013/06/15. doi: 10.1042/BJ20121743 23763312.

40. Nigro C, Leone A, Raciti GA, Longo M, Mirra P, Formisano P, et al. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci. 2017;18(1) Epub 2017/01/21. doi: 10.3390/ijms18010188 28106778; PubMed Central PMCID: PMC5297820.

41. Kumagai T, Nangaku M, Kojima I, Nagai R, Ingelfinger JR, Miyata T, et al. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am J Physiol Renal Physiol. 2009;296(4):F912–21. Epub 2009/02/13. doi: 10.1152/ajprenal.90575.2008 19211689.

42. Brouwers O, Niessen PM, Miyata T, Ostergaard JA, Flyvbjerg A, Peutz-Kootstra CJ, et al. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia. 2014;57(1):224–35. Epub 2013/10/29. doi: 10.1007/s00125-013-3088-5 24162587.

43. Giacco F, Du X, D'Agati VD, Milne R, Sui G, Geoffrion M, et al. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes. 2014;63(1):291–9. Epub 2013/09/26. doi: 10.2337/db13-0316 24062246; PubMed Central PMCID: PMC3868051.

44. Jan CR, Chen CH, Wang SC, Kuo SY. Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells. Cell Signal. 2005;17(7):847–55. Epub 2005/03/15. doi: 10.1016/j.cellsig.2004.11.007 15763427.

45. Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol. 2005;289(2):F420–30. Epub 2005/04/09. doi: 10.1152/ajprenal.00415.2004 15814529.

46. Thornalley PJ. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug metabolism and drug interactions. 2008;23(1–2):125–50. doi: 10.1515/dmdi.2008.23.1-2.125 18533367.

47. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96(3):1395–403. Epub 1995/09/01. doi: 10.1172/JCI118175 7544803; PubMed Central PMCID: PMC185762.

48. Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, et al. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res. 2008;102(8):905–13. Epub 2008/03/08. doi: 10.1161/CIRCRESAHA.107.165308 18323529.

49. Yuen A, Laschinger C, Talior I, Lee W, Chan M, Birek J, et al. Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol. 2010;29(6):537–48. Epub 2010/04/29. doi: 10.1016/j.matbio.2010.04.004 20423729.

50. Chong SA, Lee W, Arora PD, Laschinger C, Young EW, Simmons CA, et al. Methylglyoxal inhibits the binding step of collagen phagocytosis. J Biol Chem. 2007;282(11):8510–20. Epub 2007/01/19. doi: 10.1074/jbc.M609859200 17229729.

51. Nowotny K, Grune T. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys. 2014;15;542:56-64. Epub 2013 Dec 17. doi: 10.1016/j.abb.2013.12.007


Článek vyšel v časopise

PLOS One


2020 Číslo 1