Proof-of-concept for a non-invasive, portable, and wireless device for cardiovascular monitoring in pediatric patients


Autoři: Jennifer C. Miller aff001;  Jennifer Shepherd aff002;  Derek Rinderknecht aff004;  Andrew L. Cheng aff001;  Niema M. Pahlevan aff005
Působiště autorů: Division of Pediatric Cardiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America aff001;  Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America aff002;  Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America aff003;  Chief Technical Officer Avicena, LLC, Pasadena, CA, United States of America aff004;  Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, United States of America aff005;  Department of Medicine, Division of Cardiovascular Medicine, University of Southern California, Los Angeles, CA, United States of America aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227145

Souhrn

Measurement of cardiac function is vital for the health of pediatric patients with heart disease. Standard tools to measure function including echocardiogram and magnetic residence imaging are time intensive, costly, and have limited accessibility. The Vivio is a novel, non-invasive, handheld device that screens for cardiac dysfunction by analyzing intrinsic frequencies (IF) ω1 and ω2 of carotid artery waveforms. Prior studies demonstrated that left ventricular ejection fraction can be derived from IFs in adults. This study 1) studies whether the Vivio can capture carotid arterial pulse waveform data in children ages 0–19 years old; 2) tests the performance of two sensor head geometries, one larger and smaller than the standard size used in adults, designed for the pediatric population; 3) compares the IFs between pediatric age groups and adults with normal function. The Vivio successfully measured a carotid artery waveform in all children over 5 years old and 28% of children under the age of five. The small head did not accurately measure a waveform in any age group. One-way analysis of variance (ANOVA) demonstrated a difference in the IF ω1 between the adult and pediatric cohorts (F = 7.3, Prob>F = 0.0001). Post host analysis demonstrated a difference between the adult cohort (ω1 = 99 +/- 5 bpm) and the cohorts ages 0–4 (ω1 = 111 +/- 2 bpm; p = 0.0006) and 15–19 years old (ω1 = 105 +/-5 bpm; p = 0.02). One-way ANOVA demonstrated a difference in the IF ω2 between the adult and pediatric cohorts (F = 4.8, Prob>F = 0.003), specifically between the adult (ω2 = 81 +/- 13 bpm) and age 0–4 cohorts (ω2 = 48 +/- 8 bpm; p = 0.002). These results suggest that the Vivio can be used to capture carotid pulse waveform data in pediatric populations and that the data produced can be used to measure intrinsic frequencies.

Klíčová slova:

Adults – Age groups – Algorithms – Carotid arteries – Echocardiography – Head – Neck – Pediatrics


Zdroje

1. Soleymani S, Borzage M, Seri I. Hemodynamic monitoring in neonates: advances and challenges. J Perinatol. 2010;30 Suppl:S38–45. doi: 10.1038/jp.2010.101 20877406.

2. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2006;19(12):1413–30. doi: 10.1016/j.echo.2006.09.001 17138024.

3. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989;2(5):358–67. doi: 10.1016/s0894-7317(89)80014-8 2698218.

4. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108. Epub 2006/02/02. doi: 10.1016/j.euje.2005.12.014 16458610.

5. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95; quiz 576–7. doi: 10.1016/j.echo.2010.03.019 20451803.

6. Mor-Avi V, Sugeng L, Weinert L, MacEneaney P, Caiani EG, Koch R, et al. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004;110(13):1814–8. Epub 2004/09/20. doi: 10.1161/01.CIR.0000142670.65971.5F 15381653.

7. Lai WW, Mertens LL, Cohen MS, Geva T. Echocardiogrpahy in Pediatric and Congenital Heart Disease: From Fetus to Adult. Second Edition ed2016.

8. Chukwu EO, Barasch E, Mihalatos DG, Katz A, Lachmann J, Han J, et al. Relative importance of errors in left ventricular quantitation by two-dimensional echocardiography: insights from three-dimensional echocardiography and cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2008;21(9):990–7. doi: 10.1016/j.echo.2008.07.009 18765174.

9. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. 2013;61(1):77–84. Epub 2012/11/28. doi: 10.1016/j.jacc.2012.09.035 23199515.

10. Altmann K, Shen Z, Boxt LM, King DL, Gersony WM, Allan LD, et al. Comparison of three-dimensional echocardiographic assessment of volume, mass, and function in children with functionally single left ventricles with two-dimensional echocardiography and magnetic resonance imaging. Am J Cardiol. 1997;80(8):1060–5. doi: 10.1016/s0002-9149(97)00603-6 9352978.

11. Banka P, Geva T. Advances in pediatric cardiac MRI. Curr Opin Pediatr. 2016;28(5):575–83. doi: 10.1097/MOP.0000000000000400 27428483.

12. Pahlevan NM, Tavallali P, Rinderknecht DG, Petrasek D, Matthews RV, Hou TY, et al. Intrinsic frequency for a systems approach to haemodynamic waveform analysis with clinical applications. Journal of The Royal Society Interface. 2014;11(98). doi: 10.1098/rsif.2014.0617 25008087

13. Pahlevan NM, Gharib M. Aortic wave dynamics and its influence on left ventricular workload. PLoS One. 2011;6(8):e23106. Epub 2011/08/11. doi: 10.1371/journal.pone.0023106 21853075; PubMed Central PMCID: PMC3154923.

14. Pahlevan NM, Gharib M. In-vitro investigation of a potential wave pumping effect in human aorta. J Biomech. 2013;46(13):2122–9. Epub 2013/08/01. doi: 10.1016/j.jbiomech.2013.07.006 23915578.

15. Pahlevan NM, Gharib M. A bio-inspired approach for the reduction of left ventricular workload. PLoS One. 2014;9(1):e87122. Epub 2014/01/24. doi: 10.1371/journal.pone.0087122 24475239; PubMed Central PMCID: PMC3901771.

16. Pahlevan NM, Gharib M. A wave dynamics criterion for optimization of mammalian cardiovascular system. J Biomech. 2014;47(7):1727–32. Epub 2014/02/20. doi: 10.1016/j.jbiomech.2014.02.014 24642352.

17. Pahlevan NM, Rinderknecht DG, Tavallali P, Razavi M, Tran TT, Fong MW, et al. Noninvasive iphone measurement of left ventricular ejection fraction using intrinsic frequency methodology. Critical care medicine. 2017;45(7):1115–20. doi: 10.1097/CCM.0000000000002459 28441235

18. Armenian SH, Rinderknecht D, Au K, Lindenfeld L, Mills G, Siyahian A, et al. Accuracy of a novel handheld wireless platform for detection of cardiac dysfunction in anthracycline-exposed survivors of childhood cancer. Clinical Cancer Research. 2018;24(13):3119–25. doi: 10.1158/1078-0432.CCR-17-3599 29929955

19. Tavallali P, Hou TY, Rinderknecht DG, Pahlevan NM. On the convergence and accuracy of the cardiovascular intrinsic frequency method. Royal Society Open Science. 2015;2(12). doi: 10.1098/rsos.150475 27019733


Článek vyšel v časopise

PLOS One


2020 Číslo 1