TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance


Autoři: Marta Dmochowska-Boguta aff001;  Yuliya Kloc aff001;  Andrzej Zielezinski aff002;  Przemysław Werecki aff001;  Anna Nadolska-Orczyk aff003;  Wojciech M. Karlowski aff002;  Wacław Orczyk aff001
Působiště autorů: Department of Genetic Engineering, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland aff001;  Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland aff002;  Department of Functional Genomics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, Blonie, Poland aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227713

Souhrn

In wheat, adult plant resistance (APR) to leaf rust (Puccinia triticina), is effective in restricting pathogen growth and provides durable resistance against a wide range of virulent forms of P. triticina. Despite the importance, there is limited knowledge on the molecular basis of this type of resistance. We isolated and characterized the wall-associated kinase encoding gene in wheat, and assigned it as TaWAK6. Localization of TaWAK6 homeologs in A and B wheat subgenomes was consistent with the presence of the gene’s orthologs in T. urartu (AA) and T. dicoccoides (AABB) and with the absence of its orthologs in Aegilops tauschii (DD). Overexpression of TaWAK6 did not change the wheat phenotype, nor did it affect seedling resistance. However, the adult plants overexpressing TaWAK6 showed that important parameters of APR were significantly elevated. Infection types scored on the first (flag), second and third leaves indicated elevated resistance, which significantly correlated with expression of TaWAK6. Analysis of plant-pathogen interactions showed a lower number of uredinia and higher rates of necrosis at the infection sites and this was associated with smaller size of uredinia and a longer latent period. The results indicated a role of TaWAK6 in quantitative partial resistance similar to APR in wheat. It is proposed that TaWAK6, which is a non-arginine-aspartate (non-RD) kinase, represents a novel class of quantitative immune receptors in monocots.

Klíčová slova:

Genetic loci – Genetically modified plants – Leaves – Plant pathogens – Protein domains – Rice blast fungus – Seedlings – Wheat


Zdroje

1. Anderson DM, Wagner TA, Perret M, He Z-H, He D, Kohorn BD. WAKs: cell wall-associated kinases linking the cytoplasmto the extracellular matrix. Plant Molecular Biology. 2001;47:197–206. 11554472

2. Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol. Plant. 2012;5(4):841–51. doi: 10.1093/mp/ssr096 22155845.

3. Kohorn BD, Kohorn SL. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 2012;3:88. doi: 10.3389/fpls.2012.00088 22639672.

4. Kohorn BD, Hoon D, Minkoff BB, Sussman MR, Kohorn SL. Rapid Oligo-Galacturonide Induced Changes in Protein Phosphorylation in Arabidopsis. Mol. Cell Proteomics. 2016;15(4):1351–9. doi: 10.1074/mcp.M115.055368 26811356

5. Kohorn BD. Cell wall-associated kinases and pectin perception. Journal of Experimental Botany. 2016;67(2):489–94. doi: 10.1093/jxb/erv467 26507892

6. Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, et al. Nitric oxide production mediates oligogalacturonide-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell and Environment. 2012;35(8):1483–99. doi: 10.1111/j.1365-3040.2012.02505.x 22394204

7. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013;4.

8. Diener AC, Ausubel FM. Resistance to FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics. 2005;171(1):305–21. doi: 10.1534/genetics.105.042218 15965251

9. Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 2015;47(2):151–7. doi: 10.1038/ng.3170 25531751.

10. Zhang N, Zhang BQ, Zuo WL, Xing YX, Konlasuk S, Tan GQ, et al. Cytological and Molecular Characterization of ZmWAK-Mediated Head-Smut Resistance in Maize. Mol. Plant Microbe In. 2017;30(6):455–65.

11. Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. U. S. A. 2015;112(28):8780–5. doi: 10.1073/pnas.1502522112 26124097

12. Li H, Zhou SY, Zhao WS, Su SC, Peng YL. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Molecular Biology. 2009;69(3):337–46. doi: 10.1007/s11103-008-9430-5 19039666.

13. Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biology. 2016;16. ARTN 17

14. Cayrol B, Delteil A, Gobbato E, Kroj T, Morel JB. Three wall-associated kinases required for rice basal immunity form protein complexes in the plasma membrane. Plant Signaling & Behavior. 2016;11(4). ARTN e1149676.

15. Harkenrider M, Sharma R, De Vleesschauwer D, Tsao L, Zhang XT, Chern M, et al. Overexpression of Rice Wall-Associated Kinase25 (OsWAK25) Alters Resistance to Bacterial and Fungal Pathogens. PloS ONE. 2016;11(1). doi: 10.1371/journal.pone.0147310 26795719

16. Hu KM, Cao JB, Zhang J, Xia F, Ke YG, Zhang HT, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants. 2017;3(3). ARTN 17009 doi: 10.1038/nplants.2017.9 28211849

17. Rosli HG, Zheng Y, Pombo MA, Zhong S, Bombarely A, Fei Z, et al. Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol. 2013;14(12):R139. doi: 10.1186/gb-2013-14-12-r139 24359686.

18. Chartrain L, Brading PA, Brown JKM. Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol. 2005;54(2):134–43. doi: 10.1111/j.1365-3059.2005.01164.x

19. Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC, Marande W, et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 2018;50(3):368–74. doi: 10.1038/s41588-018-0051-x 29434355.

20. Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, et al. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. International Journal of Biological Macromolecules. 2018;111:1083–90. doi: 10.1016/j.ijbiomac.2018.01.113 29366891.

21. Yang K, Qi L, Zhang Z. Isolation and characterization of a novel wall-associated kinase gene TaWAK5 in wheat (Triticum aestivum). The Crop Journal. 2014;2(5):255–66.

22. Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, et al. The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads to disease. Plant Pathol. 2016;65:754–66. doi: 10.1126/sciadv.1600822 27819043

23. Pinto da Silva GB, Zanella CM, Martinelli JA, Chaves MS, Hiebert CW, McCallum BD, et al. Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. Phytopathology. 2018;108(12):1344–54. doi: 10.1094/PHYTO-06-18-0208-RVW 30211634.

24. Liu Y, Liu DC, Zhang HY, Gao HB, Guo XL, Fu XD, et al. Isolation and characterisation of six putative wheat cell wall-associated kinases. Functional Plant Biology. 2006;33(9):811–21. doi: 10.1071/Fp06041

25. Orczyk W, Dmochowska-Boguta M, Czembor HJ, Nadolska-Orczyk A. Spatiotemporal patterns of oxidative burst and micronecrosis in resistance of wheat to brown rust infection. Plant Pathol. 2010;59(3):567–75. doi: 10.1111/j.1365-3059.2010.02257.x

26. Dmochowska-Boguta M, Alaba S, Yanushevska Y, Piechota U, Lasota E, Nadolska-Orczyk A, et al. Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genomics. 2015;16(1):742. doi: 10.1186/s12864-015-1932-3 26438375.

27. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, et al. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2018;46(D1):D802–D8. doi: 10.1093/nar/gkx1011 29092050

28. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2009;19(2):327–35. doi: 10.1101/gr.073585.107 19029536

29. Wall DP, Deluca T. Ortholog detection using the reciprocal smallest distance algorithm. Methods in Molecular Biology. 2007;396:95–110. doi: 10.1007/978-1-59745-515-2_7 18025688.

30. Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res. 2000;10(4):516–22. doi: 10.1101/gr.10.4.516 10779491.

31. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 23329690

32. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33(7):1870–4. doi: 10.1093/molbev/msw054 27004904

33. Harwood WA, Ross SM, Cilento P, Snape JW. The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica. 2000;111(1):67–76. doi: 10.1023/A:1003700300235

34. Zalewski W, Orczyk W, Gasparis S, Nadolska-Orczyk A. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biology. 2012;12:206. doi: 10.1186/1471-2229-12-206 23134638.

35. Binka A, Orczyk W, Nadolska-Orczyk A. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection cassettes. Journal of Applied Genetics. 2012;53(1):1–8. doi: 10.1007/s13353-011-0064-y 21952729.

36. Scofield SR, Huang L, Brandt AS, Gill BS. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology. 2005;138(4):2165–73. doi: 10.1104/pp.105.061861 16024691.

37. Roelfs AP, Martens JW. An International System of Nomenclature for Puccinia graminis f.sp. tritici. Phytopathology. 1988;78(5):526–33. doi: 10.1094/Phyto-78-526

38. Das MK, Rajaram S, Kronstad WE, Mundt CC, Singh RP. Associations and Genetics of 3 Components of Slow Rusting in Leaf Rust of Wheat. Euphytica. 1993;68(1–2):99–109. doi: 10.1007/Bf00024159

39. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357(6346):93–6. doi: 10.1126/science.aan0032 28684525

40. Pont C, Salse J. Wheat paleohistory created asymmetrical genomic evolution. Current Opinion in Plant Biology. 2017;36:29–37. doi: 10.1016/j.pbi.2017.01.001 28182971

41. Dardick C, Schwessinger B, Ronald P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Current Opinion in Plant Biology. 2012;15(4):358–66. doi: 10.1016/j.pbi.2012.05.002 22658367

42. Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci.U.S. A. 2010;107(20):9452–7. doi: 10.1073/pnas.1000675107 20439716.

43. Yang P, Praz C, Li B, Singla J, Robert CAM, Kessel B, et al. Fungal resistance mediated by maize wall-associated kinase ZmWAK-RLK1 correlates with reduced benzoxazinoid content. New Phytologist. 2019;221(2):976–87. doi: 10.1111/nph.15419 30178602.

44. Wang N, Huang HJ, Ren ST, Li JJ, Sun Y, Sun DY, et al. The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiology. 2012;160(2):696–707. doi: 10.1104/pp.112.203943 22885936.

45. Giarola V, Krey S, von den Driesch B, Bartels D. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration. New Phytologist. 2016;210(2):535–50. doi: 10.1111/nph.13766 26607676

46. Streatfield SJ, Magallanes-Lundback ME, Beifuss KK, Brooks CA, Harkey RL, Love RT, et al. Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transgenic Research. 2004;13(4):299–312. doi: 10.1023/b:trag.0000040053.23687.9c 15517990.

47. Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, et al. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiology. 2014;164(3):1499–514. doi: 10.1104/pp.113.229575 24424323.

48. Zhang ZY, Liu X, Wang XD, Zhou MP, Zhou XY, Ye XG, et al. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. New Phytologist. 2012;196(4):1155–70. doi: 10.1111/j.1469-8137.2012.04353.x 23046089

49. Singh D, Park R, McIntosh R. Genetic relationship between the adult plant resistance gene Lr12 and the complementary gene Lr31 for seedling resistance to leaf rust in common wheat. Plant Pathol. 1999;48:567–73. doi: 10.1046/j.1365-3059.1999.00391.x

50. Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theoretical and Applied Genetics. 2007;115(6):877–84. doi: 10.1007/s00122-007-0604-3 17646964

51. Singh RP, Huerta-Espino J. Effect of leaf rust resistance gene Lr34 on components of slow rusting at seven growth stages in wheat. Euphytica. 2003;129(3):371–6. doi: 10.1023/A:1022216327934

52. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yuen J. Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica. 2007;155(3):361–9. doi: 10.1007/s10681-006-9337-7

53. Hoogkamp TJ, Chen WQ, Niks RE. Specificity of Prehaustorial Resistance to Puccinia hordei and to Two Inappropriate Rust Fungi in Barley. Phytopathology. 1998;88(8):856–61. doi: 10.1094/PHYTO.1998.88.8.856 18944894.

54. Kloppers FJ, Pretorius ZA. Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol. 1997;46(5):737–50. doi: 10.1046/j.1365-3059.1997.d01-58.x

55. Soleiman NH, Solis I, Sillero JC, Herrera-Foessel SA, Ammar K, Martinez F. Evaluation of Macroscopic and Microscopic Components of Partial Resistance to Leaf Rust in Durum Wheat. Journal of Phytopathology. 2014;162(6):359–66. doi: 10.1111/jph.12197


Článek vyšel v časopise

PLOS One


2020 Číslo 1