Increased inflammation and endothelial markers in patients with late severe post-thrombotic syndrome


Autoři: Luis Fernando Bittar aff001;  Letícia Queiroz da Silva aff001;  Fernanda Loureiro de Andrade Orsi aff001;  Kiara Cristina Senger Zapponi aff001;  Bruna de Moraes Mazetto aff001;  Erich Vinícius de Paula aff001;  Silmara Aparecida de Lima Montalvão aff001;  Joyce Maria Annichino-Bizzacchi aff001
Působiště autorů: Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227150

Souhrn

Introduction

Post-thrombotic syndrome (PTS) is a limiting long-term complication present in 20–50% of patients with deep venous thrombosis (DVT) of the lower limbs. A panel of biomarkers with potential relevance to enhance knowledge on the pathophysiology of PTS was investigated.

Methods

This case-control study included 93 patients with DVT in the lower limbs, 31 with severe PTS (cases) and 62 with mild/no PTS (controls), over 24 months after an acute episode. Thirty-one healthy individuals (HI) with no history of DVT were included as a reference to the population. FVIII activity, D-dimer, inflammatory cytokines, endothelial dysfunction markers, matrix metalloproteinases, and their inhibitors, tissue remodeling and growth factor levels were evaluated. The classification of PTS was, by the Villalta scale.

Results

Patients with severe PTS showed elevated levels of CRP, sICAM-1, sE-selectin, and decreased MMP-9 and MCP-1 levels when compared to patients with mild/no PTS. Moreover, DVT patients presented higher levels of FVIII and D-dimer when compared to HI.

Conclusions

DVT patients present an inflammatory status, endothelial dysfunction and altered proteolysis MMPs activity, even a long time after the acute thrombotic episode, which is more significant in severe PTS. These results suggest a possible role of these mediators in the maintenance and worsening of PTS severity.

Klíčová slova:

Biomarkers – Cytokines – Deep vein thrombosis – Endothelial cells – Inflammation – Thrombosis – Metalloproteases – Epidermal growth factor


Zdroje

1. Kahn SR. The post thrombotic syndrome. Thromb Res. 2011. doi: 10.1016/S0049-3848(11)70024-X

2. Pikovsky O, Rabinovich A. Prevention and treatment of the post-thrombotic syndrome. Thrombosis Research. 2018. doi: 10.1016/j.thromres.2017.07.008 28736157

3. Galanaud JP, Monreal M, Kahn SR. Epidemiology of the post-thrombotic syndrome. Thromb Res. 2018. doi: 10.1016/j.thromres.2017.07.026 28844444

4. Kahn SR, Shbaklo H, Lamping DL, Holcroft CA, Shrier I, Miron MJ, et al. Determinants of health-related quality of life during the 2 years following deep vein thrombosis. J Thromb Haemost. 2008. doi: 10.1111/j.1538-7836.2008.03002.x 18466316

5. Guanella R, Ducruet T, Johri M, Miron MJ, Roussin A, Desmarais S, et al. Economic burden and cost determinants of deep vein thrombosis during 2 years following diagnosis: A prospective evaluation. J Thromb Haemost. 2011. doi: 10.1111/j.1538-7836.2011.04516.x 21951970

6. Wakefield TW, Henke PK. The role of inflammation in early and late venous thrombosis: Are there clinical implications? Semin Vasc Surg. 2005. doi: 10.1053/j.semvascsurg.2005.05.003 16168886

7. DeRoo S, Deatrick KB, Henke PK. The vessel wall: A forgotten player in post thrombotic syndrome. Thrombosis and Haemostasis. 2010. doi: 10.1160/TH10-03-0183 20694280

8. Rabinovich A, Kahn SR. The postthrombotic syndrome: current evidence and future challenges. Journal of Thrombosis and Haemostasis. 2017. doi: 10.1111/jth.13569 27860129

9. Nadar S, Blann A, Lip G. Endothelial Dysfunction: Methods of Assessment and Application to Hypertension. Curr Pharm Des. 2005. doi: 10.2174/1381612043382765 15579056

10. Wakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008. doi: 10.1161/ATVBAHA.108.162289 18296594

11. Henke PK, Comerota AJ. An update on etiology, prevention, and therapy of postthrombotic syndrome. Journal of Vascular Surgery. 2011. doi: 10.1016/j.jvs.2010.08.050 21129900

12. Prandoni P. Healthcare burden associated with the post-thrombotic syndrome and potential impact of the new oral anticoagulants. Eur J Haematol. 2012. doi: 10.1111/j.1600-0609.2011.01733.x 22077374

13. Phillips LJ, Sarkar R. Molecular characterization of post-thrombotic syndrome. J Vasc Surg. 2007. doi: 10.1016/j.jvs.2007.02.034 17544032

14. Deatrick KB, Eliason JL, Lynch EM, Moore AJ, Dewyer NA, Varma MR, et al. Vein wall remodeling after deep vein thrombosis involves matrix metalloproteinases and late fibrosis in a mouse model. J Vasc Surg. 2005. doi: 10.1016/j.jvs.2005.04.014 16012463

15. Deatrick KB, Elfline M, Baker N, Luke CE, Blackburn S, Stabler C, et al. Postthrombotic vein wall remodeling: Preliminary observations. J Vasc Surg. 2011. doi: 10.1016/j.jvs.2010.07.043 20869834

16. Deatrick KB, Obi A, Luke CE, Elfline MA, Sood V, Upchurch GR, et al. Matrix metalloproteinase-9 deletion is associated with decreased mid-term vein wall fibrosis in experimental stasis DVT. Thromb Res. 2013. doi: 10.1016/j.thromres.2013.06.027 23978304

17. Silva LQ, Montalvão SAL, Justo-Junior ADS et al. Platelet-rich plasma lyophilization enables growth factor preservation and functionality when compared with fresh platelet-rich plasma. Regen Med. 2018;13. doi: 10.2217/rme-2018-0035 30284954

18. Kahn SR. Measurement properties of the Villalta scale to define and classify the severity of the post-thrombotic syndrome. Journal of Thrombosis and Haemostasis. 2009. doi: 10.1111/j.1538-7836.2009.03339.x 19320818

19. Rabinovich A, Cohen JM, Cushman M, Wells PS, Rodger MA, Kovacs MJ, et al. Inflammation markers and their trajectories after deep vein thrombosis in relation to risk of post-thrombotic syndrome. J Thromb Haemost. 2015. doi: 10.1111/jth.12814 25495610

20. Bucek RA, Reiter M, Quehenberger P, Minar E, Baghestanian M. The role of soluble cell adhesion molecules in patients with suspected deep vein thrombosis. Blood Coagul Fibrinolysis. 2003. doi: 10.1097/00001721-200310000-00006 14517490

21. Stain M, Schönauer V, Minar E, Bialonczyk C, Hirschl M, Weltermann A, et al. The post-thrombotic syndrome: Risk factors and impact on the course of thrombotic disease. J Thromb Haemost. 2005. doi: 10.1111/j.1538-7836.2005.01648.x 16359506

22. Latella J, Desmarais S, Miron MJ, Roussin A, Joyal F, Kassis J, et al. Relation between D-dimer level, venous valvular reflux and the development of post-thrombotic syndrome after deep vein thrombosis. J Thromb Haemost. 2010. doi: 10.1111/j.1538-7836.2010.04001.x 20670369

23. Roberts LN, Patel RK, Chitongo PB, Bonner L, Arya R. Presenting D-dimer and early symptom severity are independent predictors for post-thrombotic syndrome following a first deep vein thrombosis. Br J Haematol. 2013. doi: 10.1111/bjh.12192 23294357

24. Gabriel Botella F, Labiós M, Portolés O, Guillén M, Corella D, Francés F, et al. Incidence of post-thrombotic syndrome and its association with various risk factors in a cohort of Spanish patients after one year of follow-up following acute deep venous thrombosis. Thromb Haemost. 2004. doi: 10.1160/th03-11-0700 15269829

25. Marchena Yglesias PJ, Nieto Rodríguez JA, Serrano Martínez S, Belinchón Moya O, Cortés Carmona A, Díaz de Tuesta A, et al. [Acute-phase reactants and markers of inflammation in venous thromboembolic disease: correlation with clinical and evolution parameters]. An Med Interna. 2006. doi: 10.4321/s0212-71992006000300002 16737429

26. Bouman AC, Smits JJM, Ten Cate H, Ten Cate-Hoek AJ. Markers of coagulation, fibrinolysis and inflammation in relation to post-thrombotic syndrome. J Thromb Haemost. 2012. doi: 10.1111/j.1538-7836.2012.04798.x 22642402

27. Galanaud JP, Holcroft CA, Rodger MA, Kovacs MJ, Betancourt MT, Wells PS, et al. Predictors of post-thrombotic syndrome in a population with a first deep vein thrombosis and no primary venous insufficiency. J Thromb Haemost. 2013. doi: 10.1111/jth.12106 23279046

28. Sartori M, Favaretto E, Cini M, Legnani C, Palareti G, Cosmi B. D-dimer, FVIII and thrombotic burden in the acute phase of deep vein thrombosis in relation to the risk of post-thrombotic syndrome. Thromb Res. 2014. doi: 10.1016/j.thromres.2014.05.043 24968959

29. da Silva FAR, Rodrigues BL, Huber SC, Júnior JLRC, Lana JFSD, Montalvão SAL, et al. The use of platelet rich plasma in the treatment of refractory Crohn’s disease. Int J Clin Exp Med. 2017;10: 7533–7542.

30. Bouman AC, Cheung YW, Spronk HM, Schalkwijk CG, Ten Cate H, Ten Wolde M, et al. Biomarkers for post thrombotic syndrome: A case-control study. Thromb Res. 2014. doi: 10.1016/j.thromres.2014.06.010 24975586

31. Bittar LF, Mazetto BDM, Orsi FLA, Collela MP, De Paula EV, Annichino-Bizzacchi JM. Long-term increased factor VIII levels are associated to interleukin-6 levels but not to post-thrombotic syndrome in patients with deep venous thrombosis. Thromb Res. 2015. doi: 10.1016/j.thromres.2014.12.024 25575413

32. Roumen-Klappe EM, Janssen MCH, Van Rossum J, Holewijn S, Van Bokhoven MMJA, Kaasjager K, et al. Inflammation in deep vein thrombosis and the development of post-thrombotic syndrome: A prospective study. J Thromb Haemost. 2009. doi: 10.1111/j.1538-7836.2009.03286.x 19175493

33. Siudut J, Grela M, Wypasek E, Plens K, Undas A. Reduced plasma fibrin clot permeability and susceptibility to lysis are associated with increased risk of postthrombotic syndrome. J Thromb Haemost. 2016. doi: 10.1111/jth.13264 26786481

34. Pigott R, Dillon LP, Hemingway IH, Gearing AJH. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun. 1992. doi: 10.1016/0006-291X(92)91234-H

35. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986.

36. Kjærgaard AG, Dige A, Krog J, Tønnesen E, Wogensen L. Soluble adhesion molecules correlate with surface expression in an in vitro model of endothelial activation. Basic Clin Pharmacol Toxicol. 2013. doi: 10.1111/bcpt.12091 23724832

37. Shbaklo H, Holcroft CA, Kahn SR. Levels of inflammatory markers and the development of the post-thrombotic syndrome. Thromb Haemost. 2009. doi: 10.1160/TH08-08-0511

38. Mosevoll KA, Lindås R, Wendelbo Ø, Bruserud Ø, Reikvam H. Systemic levels of the endothelium-derived soluble adhesion molecules endocan and E-selectin in patients with suspected deep vein thrombosis. J Korean Phys Soc. 2014. doi: 10.1186/2193-1801-3-571 25332871

39. Raffetto J, Khalil R. Matrix Metalloproteinases in Venous Tissue Remodeling and Varicose Vein Formation. Curr Vasc Pharmacol. 2008. doi: 10.2174/157016108784911957 18673156

40. Kucukguven A, A. Khalil R. Matrix Metalloproteinases as Potential Targets in the Venous Dilation Associated with Varicose Veins. Curr Drug Targets. 2013. doi: 10.2174/138945013804998972

41. Jacob MP, Cazaubon M, Scemama A, Prié D, Blanchet F, Guillin MC, et al. Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation. 2002. doi: 10.1161/01.CIR.0000027521.83518.4C 12147532

42. Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS. Matrix Metalloproteinase-9 Is Required for Adequate Angiogenic Revascularization of Ischemic Tissues: Potential Role in Capillary Branching. Circ Res. 2004. doi: 10.1161/01.RES.0000111527.42357.62 14670843

43. Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest. 2008. doi: 10.1172/JCI32750 18677407

44. Nguyen KP, McGilvray KC, Puttlitz CM, Mukhopadhyay S, Chabasse C, Sarkar R. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution. PLoS One. 2015. doi: 10.1371/journal.pone.0139145 26406902

45. De Franciscis S, Gallelli L, Amato B, Butrico L, Rossi A, Buffone G, et al. Plasma MMP and TIMP evaluation in patients with deep venous thrombosis: Could they have a predictive role in the development of post-thrombotic syndrome? Int Wound J. 2016. doi: 10.1111/iwj.12489 26403997

46. Zhang W, Zhang T, Lou Y, Yan B, Cui S, Jiang L, et al. Placental growth factor promotes metastases of non-small cell lung cancer through MMP9. Cell Physiol Biochem. 2015. doi: 10.1159/000430244 26418253

47. Lee KR, Lee JS, Kim YR, Song IG, Hong EK. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-κB signaling pathway. Oncol Rep. 2014. doi: 10.3892/or.2014.3103 24677090

48. Ribeiro RIM de A, Borges Júnior PC, Cardoso SV, Candelori I, Espíndola FS, Cassali GD, et al. Expressão de metaloproteinases de matriz e de seus inibidores teciduais em carcinomas basocelulares. J Bras Patol e Med Lab. 2008. doi: 10.1590/s1676-24442008000200008

49. Bäck M, Ketelhuth DFJ, Agewall S. Matrix Metalloproteinases in Atherothrombosis. Prog Cardiovasc Dis. 2010. doi: 10.1016/j.pcad.2009.12.002 20226959

50. MacColl E, Khalil RA. Matrix metalloproteinases as regulators of vein structure and function: Implications in chronic venous disease. Journal of Pharmacology and Experimental Therapeutics. 2015. doi: 10.1124/jpet.115.227330 26319699

51. Yeniel AÖ, Erbas O, Ergenoglu AM, Aktug H, Taskiran D, Yildirim N, et al. Effect of oxytocin treatment on explant size, plasma and peritoneal levels of MCP-1, VEGF, TNF-α and histopathological parameters in a rat endometriosis model. Eur J Obstet Gynecol Reprod Biol. 2014. doi: 10.1016/j.ejogrb.2013.12.034 24447470

52. Steiner JL, Davis JM, McClellan JL, Guglielmotti A, Murphy EA. Effects of the MCP-1 synthesis inhibitor bindarit on tumorigenesis and inflammatory markers in the C3(1)/SV40Tag mouse model of breast cancer. Cytokine. 2014. doi: 10.1016/j.cyto.2013.12.011 24548426

53. Ali T, Humphries J, Burnand K, Sawyer B, Bursill C, Channon K, et al. Monocyte recruitment in venous thrombus resolution. J Vasc Surg. 2006. doi: 10.1016/j.jvs.2005.10.073 16520180

54. Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler Thromb Vasc Biol. 2018. doi: 10.1161/ATVBAHA.118.311150 29976772

55. Diaz JA, Fuchs TA, Jackson TO, Hovinga JAK, Lämmle B, Henke PK, et al. Plasma DNA is elevated in patients with deep vein thrombosis. J Vasc Surg Venous Lymphat Disord. 2013. doi: 10.1016/j.jvsv.2012.12.002 24187669


Článek vyšel v časopise

PLOS One


2020 Číslo 1