iTRAQ proteomics reveals the regulatory response to Magnaporthe oryzae in durable resistant vs. susceptible rice genotypes


Autoři: Zuobin Ma aff001;  Lili Wang aff001;  Mingzhu Zhao aff001;  Shuang Gu aff001;  Changhua Wang aff002;  Jiaming Zhao aff003;  Zhiqiang Tang aff002;  Hong Gao aff002;  Liying Zhang aff002;  Liang Fu aff002;  Yongan Yin aff004;  Na He aff002;  Wenjing Zheng aff002;  Zhengjin Xu aff001
Působiště autorů: Rice Research Institute of Shenyang Agriculture University, Shenyang, China aff001;  Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China aff002;  Sorghum Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Shenyang, China aff003;  Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227470

Souhrn

Rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most serious diseases. Although previous research using two-dimensional gel-based proteomics to assess the proteins related to the rice blast resistance had been done, few proteins were identified. Here, we used the iTRAQ method to detect the differentially expressed proteins (DEPs) in the durable resistant rice variety Gangyuan8 (GY8) and the susceptible rice variety Lijiangxintuanheigu (LTH) in response to M. oryzae invasion, and then transcriptome sequencing was used to assist analysis A total of 193 and 672 DEPs were specifically identified in GY8 and LTH, respectively, with only 46 similarly expressed DEPs being shared by GY8 and LTH.39 DEPs involved in plant-pathogen interaction, plant hormone signal transduction, fatty acid metabolism and peroxisome biosynthesis were significantly different between compatible interaction (LTH) and incompatible interaction (GY8). Some proteins participated in peroxide signal transduction and biosynthesis was down-regulated in GY8 but up-regulated in LTH. A lot of genes encoding pathogenesis-related gene (PR), such as chitinase and glucanase, were significantly up-regulated at both the transcriptome and proteome levels at 24 hours post-inoculation in GY8, but up-regulated at the transcriptome level and down-regulated at the proteome level in LTH. Our study reveals that the pathogen-associated molecular pattern (PAMP)-triggered immunity defense system may be activated at the transcriptome level but was inhibited at the protein level in susceptible rice varieties after inoculation. The results may facilitate future studies of the molecular mechanisms of rice blast resistance.

Klíčová slova:

Gene expression – Protein expression – Protein interactions – Proteomes – Rice – Rice blast fungus – Signal transduction – Transcriptome analysis


Zdroje

1. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30. doi: 10.1111/j.1364-3703.2011.00783.x 22471698.

2. Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Current opinion in microbiology. 2016;34:147–53. doi: 10.1016/j.mib.2016.10.001 27816794.

3. Pari S, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology. 2009;27(3):141–50. doi: 10.1016/j.tibtech.2008.12.002 19187990

4. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. Cell. 2006;124(4):803–14. doi: 10.1016/j.cell.2006.02.008 16497589

5. Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics. 2010;11(8):539–48. doi: 10.1038/nrg2812 20585331

6. Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, et al. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant. 2013;6(3):605–20. doi: 10.1093/mp/sst015 23340743.

7. Chen X, Ronald PC. Innate immunity in rice. Trends in plant science. 2011;16(8):451–9. doi: 10.1016/j.tplants.2011.04.003 21602092; PubMed Central PMCID: PMC3152591.

8. Desaki Y, Miya A, Venkatesh B, Tsuyumu S, Yamane H, Kaku H, et al. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 2006;47(11):1530–40. doi: 10.1093/pcp/pcl019 17018557.

9. Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell. 2012;24(8):3406–19. doi: 10.1105/tpc.112.102475 22872757; PubMed Central PMCID: PMC3462640.

10. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A. 2006;103(29):11086–91. doi: 10.1073/pnas.0508882103 16829581

11. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science. 2009;326(5954):850–3. doi: 10.1126/science.1173438 19892983.

12. Bagnaresi P, Biselli C, Orru L, Urso S, Crispino L, Abbruscato P, et al. Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One. 2012;7(12):e51609. Epub 2012/12/20. doi: 10.1371/journal.pone.0051609 PONE-D-12-21525 [pii]. 23251593; PubMed Central PMCID: PMC3520944.

13. Vijayan J, Jain S, Jain N, Devanna BN, Rathour R, Variar M, et al. Identification of differentially expressed genes in rice during its early phases of interaction with Magnaporthe oryzae. Indian Journal of Genetics & Plant Breeding. 2013;73(3):233–43.

14. Wei T, Ou B, Li J, Zhao Y, Guo D, Zhu Y, et al. Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One. 2013;8(3):e59720. doi: 10.1371/journal.pone.0059720 23544090; PubMed Central PMCID: PMC3609760.

15. Wang Y, Kwon SJ, Wu J, Choi J, Lee YH, Agrawal GK, et al. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection. Plant Pathol J. 2014;30(4):343–54. doi: 10.5423/PPJ.OA.06.2014.0055 25506299; PubMed Central PMCID: PMC4262287.

16. Li W, Liu Y, Wang J, He M, Zhou X, Yang C, et al. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium. Mol Plant Pathol. 2015. doi: 10.1111/mpp.12286 26095454.

17. Zhang Y, Zhao J, Li Y, Yuan Z, He H, Yang H, et al. Transcriptome Analysis Highlights Defense and Signaling Pathways Mediated by Rice pi21 Gene with Partial Resistance to Magnaporthe oryzae. Front Plant Sci. 2016;7:1834. doi: 10.3389/fpls.2016.01834 28008334; PubMed Central PMCID: PMC5143348.

18. Li Y, Nie Y, Zhang Z, Ye Z, Zou X, Zhang L, et al. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Proteomics. 2014;14(9):1088–101. doi: 10.1002/pmic.201300104 24505015

19. Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, et al. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics. 2010;9(5):1302–13.

20. Tae KS, Gon KS, Hyeon HD, Young KS, Ju KH, Hyun LB, et al. Proteomic analysis of pathogen‐responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics. 2004;4(11):3569–78. doi: 10.1002/pmic.200400999 15478215

21. You C, Chen L, He H, Wu L, Wang S, Ding Y, et al. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC Plant Biol. 2017;17(1):100. doi: 10.1186/s12870-017-1050-2 28592253; PubMed Central PMCID: PMC5463490.

22. Zhang HY, Lei G, Zhou HW, He C, Liao JL, Huang YJ. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Proteomics. 2017;17(5). doi: 10.1002/pmic.201600365 28101936; PubMed Central PMCID: PMC5811895.

23. Zhang M, Cheng ST, Wang HY, Wu JH, Luo YM, Wang Q, et al. iTRAQ-based proteomic analysis of defence responses triggered by the necrotrophic pathogen Rhizoctonia solani in cotton. J Proteomics. 2017;152:226–35. doi: 10.1016/j.jprot.2016.11.011 27871873.

24. Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X. iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics. 2017;152:88–101. doi: 10.1016/j.jprot.2016.10.015 27989946.

25. Wang SW, Zheng WJ, Zhao JM, Wei SH, Wang Y, Zhao BH, et al. Identification and Analysis of Magnaporthe oryzae Avirulence Genes in Liaoning Province. Scientia Agricultura Sinica. 2014;47(3):462–72.

26. Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease. Plant Cell. 2009;21(4):1273–90. doi: 10.1105/tpc.107.055228 19357089; PubMed Central PMCID: PMC2685627.

27. Zheng W, Ma L, Zhao J, Li Z, Sun F, Lu X. Comparative transcriptome analysis of two rice varieties in response to rice stripe virus and small brown planthoppers during early interaction. PLoS One. 2013;8(12):e82126. Epub 2013/12/21. doi: 10.1371/journal.pone.0082126 PONE-D-13-22724 [pii]. 24358146; PubMed Central PMCID: PMC3864904.

28. Zhang F, Zhu L, He G. Differential gene expression in response to brown planthopper feeding in rice. J Plant Physiol. 2004;161(1):53–62. doi: 10.1078/0176-1617-01179 15002664.

29. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009;5(5):308–16. doi: 10.1038/nchembio.164 19377457.

30. Zarate SI, Kempema LA, Walling LL. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol. 2007;143(2):866–75. doi: 10.1104/pp.106.090035 17189328; PubMed Central PMCID: PMC1803729.

31. Grabherr MG, Haas BJ, Moran Y, Levin JZ, Thompson DA, Ido A, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011;29(7):644. doi: 10.1038/nbt.1883 21572440

32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609.

33. Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. 2012;69(1):26–36. doi: 10.1111/j.1365-313X.2011.04766.x 21883553.

34. Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, et al. Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci. 2009;10(6):2860–72. doi: 10.3390/ijms10062860 19582234; PubMed Central PMCID: PMC2705521.

35. Dou SJ, Guan ML, Li LY, Liu GZ. Pathogenesis-related genes in rice. Chin Sci Bull. 2014;59:245–58. doi: 10.1360/972012-1831

36. Dardick C, Chen J, Richter T, Ouyang S, Ronald P. The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol. 2007;143(2):579–86. doi: 10.1104/pp.106.087270 17172291; PubMed Central PMCID: PMC1803753.

37. Kawano Y, Shimamoto K. Early signaling network in rice PRR-mediated and R-mediated immunity. Current Opinion in Plant Biology. 2013;16(4):496. doi: 10.1016/j.pbi.2013.07.004 23927868

38. Kim SG, Kim ST, Wang Y, Yu S, Choi IS, Kim YC, et al. The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Mol Cells. 2011;31(1):25–31. doi: 10.1007/s10059-011-0004-z 21110127; PubMed Central PMCID: PMC3906867.

39. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010;64(2):204–14. doi: 10.1111/j.1365-313X.2010.04324.x 21070404; PubMed Central PMCID: PMC2996852.

40. Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y, Hirano H, et al. Characterization of Receptor Proteins using Affinity Cross-linking with Biotinylated Ligands Plant and Cell Physiology. 2010;51(2):262–72. doi: 10.1093/pcp/pcp185 20032208

41. Shanti ML, George MLC, Cruz CMV, Bernardo MA, Nelson RJ, Leung H, et al. Identification of Resistance Genes Effective Against Rice Bacterial Blight Pathogen in Eastern India. Plant Dis. 2001;85(5):506–12. doi: 10.1094/PDIS.2001.85.5.506 30823126.

42. Takai R, Isogai A, Takayama S, Che FS. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact. 2008;21(12):1635–42. doi: 10.1094/MPMI-21-12-1635 18986259.

43. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, et al. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell host & microbe. 2013;13(3):347–57. doi: 10.1016/j.chom.2013.02.007 23498959.

44. Lin Z, Wang Z, Zhang X, Liu Z, Li G, Wang S, et al. Complementary Proteome and Transcriptome Profiling in Developing Grains of a Notched-Belly Rice Mutant Reveals Key Pathways Involved in Chalkiness Formation. Plant Cell Physiol. 2017;58(3):560–73. doi: 10.1093/pcp/pcx001 28158863; PubMed Central PMCID: PMC5444571.

45. Peng X, Qin Z, Zhang G, Guo Y, Huang J. Integration of the proteome and transcriptome reveals multiple levels of gene regulation in the rice dl2 mutant. Front Plant Sci. 2015;6:351. doi: 10.3389/fpls.2015.00351 26136752; PubMed Central PMCID: PMC4469824.


Článek vyšel v časopise

PLOS One


2020 Číslo 1