#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Improvement of classification performance of Parkinson’s disease using shape features for machine learning on dopamine transporter single photon emission computed tomography


Autoři: Takuro Shiiba aff001;  Yuki Arimura aff002;  Miku Nagano aff003;  Tenma Takahashi aff003;  Akihiro Takaki aff001
Působiště autorů: Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, Misakimachi, Omuta-shi, Fukuoka, Japan aff001;  Department of Radiology, Kokura Medical Center, Harugaoka, Kokura Minami-ku, Kitakyushu-shi, Fukuoka, Japan aff002;  Department of Radiology, University of Miyazaki Hospital, Kihara, Kiyotake-cho, Miyazaki-shi, Miyazaki, Japan aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0228289

Souhrn

Objective

To assess the classification performance between Parkinson’s disease (PD) and normal control (NC) when semi-quantitative indicators and shape features obtained on dopamine transporter (DAT) single photon emission computed tomography (SPECT) are combined as a feature of machine learning (ML).

Methods

A total of 100 cases of both PD and normal control (NC) from the Parkinson’s Progression Markers Initiative database were evaluated. A summed image was generated and regions of interests were set to the left and right striata. Area, equivalent diameter, major axis length, minor axis length, perimeter and circularity were calculated as shape features. Striatum binding ratios (SBRputamen and SBRcaudate) were used as comparison features. The classification performance of the PD and NC groups according to receiver operating characteristic analysis of the shape features was compared in terms of SBRs. Furthermore, we compared the classification performance of ML when shape features or SBRs were used alone and in combination.

Results

The shape features (except minor axis length) and SBRs indicated significant differences between the NC and PD groups (p < 0.05). The top five areas under the curves (AUC) were as follows: circularity (0.972), SBRputamen (0.972), major axis length (0.945), SBRcaudate (0.928) and perimeter (0.896). When classification was done using ML, AUC was as follows: circularity and SBRs (0.995), circularity alone (0.990), and SBRs (0.973). The classification performance was significantly improved by combining SBRs and circularity than by SBRs alone (p = 0.018).

Conclusion

We found that the circularity obtained from DAT-SPECT images could help in distinguishing NC and PD. Furthermore, the classification performance of ML was significantly improved using circularity in SBRs together.

Klíčová slova:

Dopamine transporters – Imaging techniques – Machine learning – Neostriatum – Neuroimaging – Parkinson disease – Single photon emission computed tomography – Support vector machines


Zdroje

1. Kalia L V., Lang AE. Parkinson’s disease. Lancet. 2015;386: 896–912. doi: 10.1016/S0140-6736(14)61393-3 25904081

2. Rocca WA. The burden of Parkinson’s disease: a worldwide perspective. Lancet Neurol. 2018;17: 928–929. doi: 10.1016/S1474-4422(18)30355-7 30287052

3. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006;5: 75–86. doi: 10.1016/S1474-4422(05)70285-4 16361025

4. Shiiba T, Nishii R, Sasaki M, Kihara Y, Tsuruta K, Maeda M, et al. Assessment of the efficacy of early phase parameters by 123I-MIBG dynamic imaging for distinguishing Lewy body-related diseases from Parkinson’s syndrome. Ann Nucl Med. 2015;29: 149–156. doi: 10.1007/s12149-014-0923-9 25366472

5. Darcourt J, Booij J, Tatsch K, Varrone A, Vander Borght T, Kapucu ÖL, et al. EANM procedure guidelines for brain neurotransmission SPECT using123I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37: 443–450. doi: 10.1007/s00259-009-1267-x 19838702

6. Tossici-Bolt L, Hoffmann SMA, Kemp PM, Mehta RL, Fleming JS. Quantification of [123I]FP-CIT SPECT brain images: An accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging. 2006;33: 1491–1499. doi: 10.1007/s00259-006-0155-x 16858570

7. Benamer HTS, Patterson J, Wyper DJ, Hadley DM, Macphee GJ a, Grosset DG. Correlation of Parkinson ‘ s Disease Severity and Duration With I-FP-CIT SPECT Striatal Uptake. Mov Disord. 2000;15: 692–698. doi: 10.1002/1531-8257(200007)15:4<692::aid-mds1014>3.0.co;2-v 10928580

8. Bonab A a, Fischman AJ, Alpert NM. Comparison of 4 methods for quantification of dopamine transporters by SPECT with [123I]IACFT. J Nucl Med. 2000;41: 1086–92. Available: http://www.ncbi.nlm.nih.gov/pubmed/10855640 10855640

9. Kahraman D, Eggers C, Schicha H, Timmermann L, Schmidt M. Visual assessment of dopaminergic degeneration pattern in 123I-FP-CIT SPECT differentiates patients with atypical parkinsonian syndromes and idiopathic Parkinson’s disease. J Neurol. 2012;259: 251–260. doi: 10.1007/s00415-011-6163-1 21750954

10. Habraken JB, Booij J, Slomka P, Sokole EB, van Royen E a. Quantification and visualization of defects of the functional dopaminergic system using an automatic algorithm. J Nucl Med. 1999;40: 1091–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/10405125 10405125

11. Eggers C, Kahraman D, Fink GR, Schmidt M, Timmermann L. Akinetic-rigid and tremor-dominant Parkinson’s disease patients show different patterns of FP-CIT Single photon emission computed tomography. Mov Disord. 2011;26: 416–423. doi: 10.1002/mds.23468 21264942

12. Lloyd JJ, Petrides G, Donaghy PC, Colloby SJ, Attems J, O’Brien JT, et al. A new visual rating scale for Ioflupane imaging in Lewy body disease. NeuroImage Clin. 2018. doi: 10.1016/j.nicl.2018.09.012 30268991

13. Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares JMRS. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT SPECT images. Eur J Nucl Med Mol Imaging. 2018;45: 1052–1062. doi: 10.1007/s00259-017-3918-7 29275487

14. Staff RT, Ahearn TS, Wilson K, Counsell CE, Taylor K, Caslake R, et al. Shape analysis of 123l-N-ω-fluoropropyl-2-β- carbomethoxy-3β-(4-iodophenyl) nortropane single-photon emission computed tomography images in the assessment of patients with parkinsonian syndromes. Nucl Med Commun. 2009;30: 194–201. doi: 10.1097/MNM.0b013e328314b863 19262280

15. Zhang YC, Kagen AC. Machine Learning Interface for Medical Image Analysis. J Digit Imaging. 2017;30: 615–621. doi: 10.1007/s10278-016-9910-0 27730415

16. Huertas-Fernández I, García-Gómez FJ, García-Solís D, Benítez-Rivero S, Marín-Oyaga VA, Jesús S, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [123I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2015;42: 112–119. doi: 10.1007/s00259-014-2882-8 25120041

17. Oliveira FPM, Castelo-Branco M. Computer-aided diagnosis of Parkinson’s disease based on [(123)I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng. 2015;12: 026008. doi: 10.1088/1741-2560/12/2/026008 25710187

18. Augimeri A, Cherubini A, Cascini GL, Galea D, Caligiuri ME, Barbagallo G, et al. CADA—computer-aided DaTSCAN analysis. EJNMMI Phys. 2016;3: 4. doi: 10.1186/s40658-016-0140-9 26879864

19. Illán IA, Górriz JM, Ramírez J, Segovia F, Jiménez-Hoyuela JM, Ortega Lozano SJ. Automatic assistance to Parkinsonˈs disease diagnosis in DaTSCAN SPECT imaging. Med Phys. 2012;39: 5971–5980. doi: 10.1118/1.4742055 23039635

20. Marek K, Jennings D, Lasch S, Siderowf A, Tanner C, Simuni T, et al. The Parkinson Progression Marker Initiative (PPMI). Progress in Neurobiology. 2011. doi: 10.1016/j.pneurobio.2011.09.005 21930184

21. Davidsson A, Georgiopoulos C, Dizdar N, Granerus G, Zachrisson H. Comparison between visual assessment of dopaminergic degeneration pattern and semi-quantitative ratio calculations in patients with Parkinson’s disease and Atypical Parkinsonian syndromes using DaTSCAN®SPECT. Ann Nucl Med. 2014;28: 851–859. doi: 10.1007/s12149-014-0878-x 24997753

22. Wisniewski G, Seibyl J, Marek K. DatScan SPECT Image Processing Methods for Calculation of Striatal Binding Ratio (SBR).: 4300. Available: https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=6&subCategoryId=12

23. Rahmim A, Salimpour Y, Jain S, Blinder SAL, Klyuzhin IS, Smith GS, et al. Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments. NeuroImage Clin. 2016;12: e1–e9. doi: 10.1016/j.nicl.2016.02.012 27995072

24. Martinez-Murcia FJ, Górriz JM, Ramírez J, Moreno-Caballero M, Gómez-Río M. Parametrization of textural patterns in 123 I-ioflupane imaging for the automatic detection of Parkinsonism. Med Phys. 2013;41: 012502. doi: 10.1118/1.4845115 24387526


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#