Chemical profiling of Curatella americana Linn leaves by UPLC-HRMS and its wound healing activity in mice

Autoři: Mayara Amoras Teles Fujishima aff001;  Dayse Maria Cunha Sá aff001;  Carolina Miranda de Sousa Lima aff001;  José Adolfo H. M. Bittencourt aff001;  Washington Luiz Assunção Pereira aff004;  Abraão de Jesus Barbosa Muribeca aff005;  Consuelo Yumiko Yoshioka e Silva aff005;  Milton Nascimento da Silva aff005;  Francisco Fábio Oliveira de Sousa aff001;  Cleydson B. R. dos Santos aff001;  Jocivania Oliveira da Silva aff001
Působiště autorů: Postgraduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá, AP, Brazil aff001;  Laboratory of Toxicology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, Brazil aff002;  Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá, AP, Brazil aff003;  Laboratory of Animal Pathology, Institute of Animal Production, Federal Rural University of Amazônia, Belém, Brazil aff004;  Laboratory of Liquid Chromatography, Department of Chemistry, Federal University of Pará, Belém, Brazil aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225514


Based on ethnopharmacological studies, a lot of plants, as well as its compounds, have been investigated for the potential use as wound healing agents. In Brazil, Curatella americana is traditionally used by local people to treat wounds, ulcers and inflammations. However, to the best of our knowledge, its traditional use in the treatment of wounds has not been validated by a scientific study. Here, some compounds, many of them flavonoids, were identified in the hydroethanolic extract from the leaves of C. americana (HECA) by LC-HRMS and LC-MS/MS. Besides that, solutions containing different concentrations of HECA and a gel produced with this extract were evaluated for its antimicrobial, coagulant and wound healing activities on an excision mouse wound model as well as its acute dermal safety. A total of thirteen compounds were identified in HECA, mainly quercetin, kaempferol and glucoside derivatives of both, besides catechin and epicatechin known as wound healing agents. The group treated with 1% of HECA exhibited highest wound healing activity and best rate of wound contraction confirmed by histopathology results. The present study provides scientific evidence of, this extract (HECA) possess remarkable wound healing activity, thereby, supporting the traditional use.

Klíčová slova:

Angiogenesis – Bacterial pathogens – Fibroblasts – Inflammation – Leaves – Reactive oxygen species – Tissue repair – Wound healing


1. Mandelbaum SH, Santis EPD, Mandelbaum MHS. Cicatrização: conceitos atuais e recursos auxiliares. An.Bras.Dermatol. [online] 2003, 78 (4), 393–410, [accessed 2017 Dec 10]. Available from: (In Portuguese).

2. Sen CK, Gordillo MG, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009, 17(6), 763–771, doi: 10.1111/j.1524-475X.2009.00543.x 19903300

3. Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing- Exploring medicinal plants of India. J Ethnopharmacol. 2007, 114, 103–113, doi: 10.1016/j.jep.2007.08.010 17884316

4. Agyare C, Boakye YD, Bekoe EO, Hensel A, Dapaah SO, Appiah T. Review: African medicinal plants with wound healing properties. J Ethnopharmacol. 2016, 177, 85–100, doi: 10.1016/j.jep.2015.11.008 26549271

5. Parente LML, Júnior RSL, Tresvenzol LMF, Vinaud MC, Paula JR, Paulo NM. Wound Healing and Anti-Inflammatory Effect in Animal Models of Calendula officinalis L. Growing in Brazil. Evid Based Complement Alternat Med 2012, 2012, 1–7, doi: 10.1155/2012/375671 22315631

6. Panchatcharam M, Miriyala S, Gayathri VS, Suguna L. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem2006, 290 (2), 87–96, doi: 10.1007/s11010-006-9170-2 16770527

7. Ratter JA, Bridgewater S, Ribeiro JF. Analysis of the floristic composition of the Brazilian cerrado vegetation iii: comparison of the woody vegetation of 376 areas. E J. Bot. 2003, 60 (1), 57–109, doi: 10.1017/S0960428603000064

8. Villarroel D, Catari JC, Calderon D, Mendez R, Feldpausch T. Structure, composition and tree diversity of two areas in the Cerrado sensu stricto in the Chiquitanía (Santa Cruz, Bolivia). Ecol. Boliv. [online] 2010, 45 (2), 116–130, [accessed 2017 dec 10]. Available from:

9. Canuto J Z. Filogeografia de Curatella americana (Delineaceae): uma espécie árborea das savanas da Amazonia e Brasil Central, Masters level. National Institute of Research of the Amazon, Manaus, Brazil, 2011, [online] [accessed 2017dec 10]. Available from: (In Portuguese).

10. Barbosa RI, Nascimento SP, Amorim PAF, Silva RF. Notas sobre a composição arbóreo-arbustiva de uma fisionomia das savanas de Roraima, Amazônia Brasileira. Acta bot. bras.2005, 19(2), 323–329, doi: 10.1590/s0102-33062005000200015

11. Amaral DD, Neto SVC, Jardim MAG, Santos JUM, Bastos MNC. Curatella americana L. (Dilleniaceae): primeira ocorrência nas restingas do litoral da Amazônia. Braz J. Biosc. [online] 2016, 14(4), 257–262, [accessed 2017 dec 10]. Available from: (In Portuguese).

12. Medeiros PM, Ladio AH, Albuquerque UP. Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: A macroscale investigation based on available literature. J Ethnopharmacol. 2013, 150 (2), 729–746. doi: 10.1016/j.jep.2013.09.026 24095828

13. Vila Verde GM. Paula JR, Caneiro DM. Levantamento etnobotânico das plantas medicinais do cerrado utilizadas pela população de Mossâmedes (GO). Ver. Bras. Farmacog. 2003, 13, 64–66, doi: 10.1590/S0102-695X200300024

14. Souza CD, Felfili JM. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta bot. Bras.[online] 2006; 20 (1), 135–142. [accessed 2017 feb 05]. Available from: (In Portuguese).

15. Baillon H. The natural history of plants. Reeve: London, UK, 1871; pp. 1827–1895 Retrieved from: [accessed 2017 oct 03]. Available from:

16. Lima CC, Lemos RPL, Conserva LM. Dilleniaceae family: an overview of its ethnomedicinal uses, biological and phytochemical profile. J Pharmacogn. Phytochem [online] 2014, 3(2), 181–204, [accessed 2017 oct 03]. Available from:

17. Alexandre-Moreira M, Piuvezam M, Araújo C, Thomas G. Studies on the anti-inflammatory and analgesic activity of Curatella americana L. J. Ethnopharmacol 1999, 67 (2), 171–177, doi: 10.1016/s0378-8741(99)00009-4 10619381

18. Toledo CE, Britta EA, Ceole LF, Silva ER, de Mello JC, Dias Filho BP et al. Antimicrobial and cytotoxic activities of medicinal plants of the Brazilian cerrado, using Brazilian cachaça as extractor liquid. J. Ethnopharmacol. 2011, 133 (2), 420–425, doi: 10.1016/j.jep.2010.10.021 20951786

19. Guerrero MF, Puebla P, Carron R, Martin ML, Arteaga L, Roman LS. Assessment of the antihypertensive and vasodilator effects of ethanolic extracts of some Colombian medicinal plants. J Ethnopharmacol. 2002, 80 (1), 37–42, doi: 10.1016/s0378-8741(01)00420-2 11891085

20. Hiruma-Lima CA, Rodrigues CM, Kushima H, Moraes TM, Lolis SF, Feitosa SB, et al. The anti-ulcerogenic effects of Curatella americana L. J Ethnopharmacol. 2009, 121 (3), 425–432, doi: 10.1016/j.jep.2008.10.017 19022369

21. Lopes RHO, Macorini LFB, Antunes KA, Espindola PPDT, Alfredo TM, Rocha PDSD, et al. Antioxidant and Hypolipidemic Activity of the Hydroethanolic Extract of Curatella americana L. Leaves. Oxid Med Cell Longev. 2016, 2016, 1–6, doi: 10.1155/2016/9681425 27247703

22. Brazilian Pharmacopoeia 2010; Brazilian Health Regulatory Agency. 5th ed., Vol 1; p.546. Brazil. 2010.

23. World Health Organization, WHO. Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues, Geneva, Switzerland, 2007.

24. NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, seven ed., Clinical and Laboratory Standards Institute, Wayne (PA), 2006.

25. Moosman T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods1983, 65, 55–63, doi: 10.1016/0022-1759(83)90303-4 6606682

26. Lopes TRM, Oliveira FR, Malheiros FF, Andrade MA, Monteiro MC, Gonçalves ACB. Antimicrobial bioassay-guided fractionation of a metanol extract of Eupatorium triplinerve. Pharm. [on line] Biol. 2014, doi: 10.3109/13880209.2014.948634 25430540

27. Moura LA, Almeida ACM, Domingos TFS, Ortiz-Ramirez F, Cavalcanti DN, Teixeira VL, et al. Antiplatelet and Anticoagulant Effects of Diterpenes Isolated from the Marine Alga, Dictyota menstrualis. Mar. Drugs. 2014, 12, 2471–2484, doi: 10.3390/md12052471 24796305

28. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol.1999, 299, 152–178, doi: 10.1016/S0076-6879(99)99017-1

29. Pamplona S, Sá P, Lopes D, Costa E, Yamada E, Silva C, et al. In Vitro Cytoprotective Effects and Antioxidant Capacity of Phenolic Compounds from the Leaves of Swietenia macrophylla. Molecules 2015, 20,18777–18788. doi: 10.3390/molecules201018777 26501245

30. National Formulary of Brazilian Pharmacopoeia, Brazilian Health Regulatory Agency. 2th ed., Brazil, 2012.

31. Cosmetic Products Stability Guide, Brazilian Health Regulatory Agency, 1th ed. V.1, Brazil, 2004.

32. OECD (2017), Test No. 402: Acute Dermal Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris, doi:10.1787/9789264070585-en

33. Mulisa E, Asres K, Engidawork E. Evaluation of wound healing and antiinflammatory activity of the rhizomes of Rumex abyssinicus J. (Polygonaceae) in mice. BMC Complementary Altern. Med. 2015; 15, 341–351, doi: 10.1186/s12906-015-0878-y 26423525

34. Corrêa NM, Camargo junior FB, Ignácio RF, Leonardi GR. Avaliação do comportamento reológico de diferentes géis hidrofílicos. Braz. J. Pharm. Sci. 2005; 41 (1), 73–78, 2005, ISSN: 1516-9332.

35. Anchisi C, Maccioni AM, Sinico C, Valenti D. Stability studies of new cosmetic formulations with vegetable extracts as functional agents. Il Farmaco. 2001; 56, 427–431, doi: 10.1016/s0014-827x(01)01055-2 11482771

36. Singer AJ, Clarck RAF. Cutaneous Wound Healing. N. Engl. J. Med.1999; 341(10), 738–746. doi: 10.1056/NEJM199909023411006 10471461

37. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008; 453, 314–321. doi: 10.1038/nature07039 18480812

38. Stadelmann WK, Digenis AG, Tobin GR, Kentucky L. Physiology and Healing Dynamics of Chronic Cutaneous Wounds. Am. J. Surg. 1998; 176(2), 26–38. doi: 10.1016/S0002-9610(98)00183-4

39. Mercer PF, Chambers RC. Coagulation and coagulation signalling in fibrosis. Biochim. Biophys. Acta. 2013; 1832, 1018–1027, doi: 10.1016/j.bbadis.2012.12.013 23298546

40. Fernandez ML, Upton Z, Shooter GK. Uric Acid and Xanthine Oxidoreductase in Wound Healing. Curr Rheumatol. Rep. 2014; 16(396), doi: 10.1007/s11926-013-0396-1 24357442

41. Ghosh PK, Gaba A. Phyto-Extracts in Wound Healing. J Pharm Pharm Sci. 2013; 16(5), 760–820. doi: 10.18433/j3831v 24393557

42. Talekar YP, Apte KG, Paygude SV, Tondare PR, Parab PB. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays. J. Ayurv. Integrat. Med; 2017, 8(2), 73–81. doi: 10.1016/j.jaim.2016.11.007 28601354

43. Fujishima MAT, Silva NSR, Ramos RS, Ferreira EFB, Santos KLB, Silva CHTPD, et al. An Antioxidant Potential, Quantum-Chemical and Molecular Docking Study of the Major Chemical Constituents Present in the Leaves of Curatella americana Linn. Pharmaceuticals; 2018, 11(72), doi: 10.3390/ph11030072 30036950

44. El-Azizi MM, Ateya AM, Svoboda GH, Schiff PL, Slatkin DJ, Knapp JE. Chemical constituents of Curatella americana (Dilleniaceae). J. Pharm. Sci.1980; 69 (3), 360–361. doi: 10.1002/jps.2600690333 7381724

45. Gurni AA, Kubitzki K. Flavonoid Chemistry and Systematics of the Dilleniaceae. Biochem. Syst. Ecol. 1981; 9(2/3), 109–114. doi: 10.1016/0305-1978(81)90028-4

46. Jeong WS, Kong AT. Biological Properties of Monomeric and Polymeric Catechins: Green Tea Catechins and Procyanidins. Pharm. Biol. 2004; 42, 84–93. doi: 10.1080/13880200490893500

47. Tsuruya M, Niwano Y, Nakamura K, Kanno T, Nakashima T, Egusa H, et al. Acceleration of Proliferative Response of Mouse Fibroblasts by Short-Time Pretreatment with Polyphenols. Appl. Biochem. Biotechmol. 2014; 174, 2223–2235. doi: 10.1007/s12010-014-1124-7 25173673

48. Iwasaki Y, Matsui T, Arakawa Y. The protective and hormonal effects of proanthocyanidin against gastric mucosal injury in Wistar rats. J. Gastroenterol. 2004, 39, 831–837, doi: 10.1007/s00535-004-1399-5 15565401

49. Form DM, Auerbach R. PGE2 and Angiogenesis. Exp. Biol. Med. 1983; 172(2), 214–218. doi: 10.3181/00379727-172-41548 6572402

50. Futagami A, Ishizaki Fukuda Y, Seiji Kawana, Yamanaka N. Wound Healing Involves Induction of Cyclooxygenase-2 Expression in Rat Skin. Lab. Invest. 2002; 82(11), 1503–1513. doi: 10.1097/01.lab.0000035024.75914.39 12429810

51. Rhodes LE, Darby G, Massey KA, Clarke KA, Dew TP, Farrar MD, et al. Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyeicosatetraenoic acid. Br. J. Nutr. 2013; 110, 891–900. doi: 10.1017/S0007114512006071 23351338

52. Tulio AZ, Jablonski JE, Jackson LS, Chang C, Edirisinghe I, Burton-Freeman B. Phenolic composition, antioxidant properties, and endothelial cell function on red and white cranberry fruits. Food Chem. 2014; 157, 540–552. doi: 10.1016/j.foodchem.2014.02.047 24679816

53. Shrivastava R. Clinical evidence to demonstrate that simultaneous growth of epithelial and fibroblast cells is essential for deep wound healing. Diabetes. Res. Clin. Pract. 2011; 92, 92–99. doi: 10.1016/j.diabres.2010.12.021 21247651

54. Negrão R, Costa R, Duarte D, Gomes TT, Azevedo I, Soares R. Differents effects of catechin on angiogenesis and inflammation depending on VEGF levels. J. of Nutr. Biochem. 2013; 24, 435–444. doi: 10.1016/j.jnutbio.2011.12.011 22704779

55. Kim HP, Son KH, Chang HW, Kang SS. Anti-inflammatory Plant Flavonoids and Cellular Action Mechanisms. J. Pharmacol. Sci. 2004; 96, 229–245. doi: 10.1254/jphs.crj04003x 15539763

56. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002; 13, 572–584. doi: 10.1016/s0955-2863(02)00208-5 12550068

57. Ahmeda OM, Mohamed T, Moustafad H, Hamdy H, Ahmede RR, Aboudd E. Quercetin and low-level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed. Pharmacother. 2018; 101, 58–73. doi: 10.1016/j.biopha.2018.02.040 29477473

58. Gomathi K, Gopinath D, Ahmed MR, Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003; 24, 2767–2772. doi: 10.1016/s0142-9612(03)00059-0 12711523

59. Yoon JJ, Lee YJ, Kim JS, Kang DG, Lee HS. Protective role of betulinic acid on TNF-a-induced cell adhesion molecules in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2010; 391, 96–101. doi: 10.1016/j.bbrc.2009.11.009 19896462

60. Zielins ER, Elizabeth AB, Luan A, Hu MS, Walmsley G, Paik K,. et al. Emerging drugs for the treatment of wound healing. Expert Opin. Emerging Drugs. 2015; 20 (2), 235–246. doi: 10.1517/14728214.2015.1018176 25704608

61. Lobmann R, schultz G, lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes care. 2005; 28, (2), 461–471. doi: 10.2337/diacare.28.2.461 15677818

62. Suriyamoorthy S, Subramaniam K, Wahab F, Karthikeyan G. Evaluation of wound healing activity of Acacia leucophloea bark in rats. Braz J. Pharm. 2012, 22(6), 1338–1343, doi: 10.1590/S0102695X2012005000121

63. Swamya HMK, Krishna V, Shankarmurthy K, Rahimana BA, Mankani KL, Mahadevan KM, et al. Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia ribes Burm. J. Ethnopharmacol2007, 109, 529–534, doi: 10.1016/j.jep.2006.09.003 17034970

64. Costa ES, Hiruma-Lima CA, Lima EO, Sucupira GC, Bertolin AO, Lolis SF, et al. Antimicrobial Activity of Some Medicinal Plants of the Cerrado, Brazil. Phytother. Res. 2008, 22, 705–707, dói: doi: 10.1002/ptr.2397 18350520

65. Cabral MS. Avaliação da atividade cicatrizante de formulações fitoterápicas a base de Curatella americana e Costus spicatus in vivo. MsC Thesis, Federal University of Amapá, Brazil. 2015. [internet] Available from:

66. Kant K, Gopal A, Kumar D, Gopalkrishnan A, Pathak NN, Kurade NP, et al Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2013, 507, 16–24, doi: 10.1016/j.acthis.2013.04.010 23706531

67. King DJ, Noss RR. Toxicity of Polyacrylamide and Acrylamide. Rev. Environ. Health2016, 8, doi: 10.1515/reveh-1989-1-403 2485925

68. Singer AJ, Dagum AB. Current Management of Acute Cutaneous Wounds. N. Engl. J. Med2008, 359 (10), 1037–1046, doi: 10.1056/NEJMra0707253 18768947

69. Ousey K, Cutting KF, Rogers AA, Rippon MG. The importance of hydration in wound healing: reinvigorating the clinical perspective. J. Wound care2016, 25(3), 122–130, doi: 10.12968/jowc.2016.25.3.122 26947692

70. Rodríguez M, Domingo E, Municio C, Alvarez Y, Hugo E, Fernández N, Crespo MS. Plarization of the Innate Immune Response by Prostaglandin E2: A Puzzle of Receptors and Signals. Mol. Pharmacol. 2014, 85, 187–197, doi: 10.1124/mol.113.089573 24170779

71. Barros ASA, Carvalho HO, Santosa IVF, Taglialegna T, Sampaioa TIS, Duarte JL, et al. Study of the non-clinical healing activities of the extract and gel of Portulaca pilosa L. in skin wounds in wistar rats: A preliminary study. Biomed. Pharmacother. 2017, 96, 182–190. doi: 10.1016/j.biopha.2017.09.142 28987941

72. Leonardi GR, Gaspar LR, Campos PMBGM. Study of pH variation on the skin using cosmetic formulations with and without vitamins A, E or ceramide: by a non-invasive method. An Bras Dermatol 2002; 77 (5): 563–569. doi: 10.1590/S0365-05962002000500006

Článek vyšel v časopise


2020 Číslo 1