Trophic ecology of Mexican Pacific harbor seal colonies using carbon and nitrogen stable isotopes

Autoři: Maricela Juárez-Rodríguez aff001;  Gisela Heckel aff001;  Juan Carlos Herguera-García aff002;  Fernando R. Elorriaga-Verplancken aff003;  Sharon Z. Herzka aff004;  Yolanda Schramm aff005
Působiště autorů: Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México aff001;  Departamento de Ecología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México aff002;  Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Pesquerías y Biología Marina, La Paz, Baja California Sur, México aff003;  Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México aff004;  Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225889


There is limited information that provides a comprehensive understanding of the trophic ecology of Mexican Pacific harbor seal (Phoca vitulina richardii) colonies. While scat analysis has been used to determine the diet of some colonies, the integrative characterization of its feeding habits on broader temporal and spatial scales remains limited. We examined potential feeding grounds, trophic niche width, and overlap, and inferred the degree of dietary specialization using stable carbon and nitrogen isotope ratios (δ13C and δ15N) in this subspecies. We analyzed δ13C and δ15N on fur samples from pups collected at five sites along the western coast of the Baja California Peninsula, Mexico. Fur of natal coat of Pacific harbor seal pups begins to grow during the seventh month in utero until the last stage of gestation. Therefore pup fur is a good proxy for the mother’s feeding habits in winter (~December to March), based on the timing of gestation for the subspecies in this region. Our results indicated that the δ13C and δ15N values differed significantly among sampling sites, with the highest mean δ15N value occurring at the southernmost site, reflecting a well-characterized north to south latitudinal 15N-enrichment in the food web. The tendency identified in δ13C values, in which the northern colonies showed the most enriched values, suggests nearshore and benthic-demersal feeding habits. A low variance in δ13C and δ15N values for each colony (<1‰) and relatively small standard ellipse areas suggest a specialized foraging behavior in adult female Pacific harbor seals in Mexican waters.

Klíčová slova:

Ecological niches – Food web structure – Foraging – Islands – Isotopes – Seals – Stable isotopes – Trophic interactions


1. Garvey JE, Whiles RM. Trophic Ecology. Florida: CRC Press; 2016.

2. Herreman JK, Blundell GM, Ben-David M. Evidence of bottom-up control of diet driven by top-down processes in a declining harbor seal Phoca vitulina richardsi population. Mar Ecol Prog Ser. 2009;374: 287–300. doi: 10.3354/meps07719

3. Bossart GD. Marine Mammals as Sentinel Species for Oceans and Human Health. Oceanography. 2006;19(2): 134–7. doi: 10.5670/oceanog.2006.77

4. Heithaus MR, Frid A, Wirsing AJ, Worm B. Predicting ecological consequences of marine top predator declines. Trends Ecol Evol. 2008;23(4): 202–10. doi: 10.1016/j.tree.2008.01.003 18308421

5. Páez-Rosas D, Aurioles-Gamboa D. Alimentary niche partitioning in the Galapagos sea lion, Zalophus wollebaeki. Mar Biol. 2010;157(12): 2769–81.

6. Páez‐Rosas D, Rodríguez‐Pérez M, Riofrío‐Lazo M. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic bayesian mixing models in Galapagos pinnipeds. Rapid Commun Mass Spectrom. 2014;28(23): 2550–8. doi: 10.1002/rcm.7047 25366402

7. Committee on Taxonomy. List of marine mammal species and subspecies 2019 [Accessed 19 November 2019]. Available from:

8. Kelly JF. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool. 2000;78(1): 1–27.

9. Lubinsky-Jinich D, Schram Y, Heckel G. The Pacific harbor seal's (Phoca vitulina richardii) breeding colonies in Mexico: abundance and distribution. Aquat Mamm. 2017;43(1): 73–81. doi: 10.1578/AM.43.1.2017.73

10. Harvey J. Phoca vitulina ssp. richardii. The IUCN Red List of Threatened Species 2016: e.T17022A66991556. 2016. doi: 10.2305/IUCN.UK.2016-1.RLTS.T17022A66991556.en

11. Temte JL, Bigg MA, Wiig Ø. Clines revisited: The timing of pupping in the harbour seal (Phoca vitulina). J Zool. 1991;224(4): 617–32. doi: 10.1111/j.1469-7998.1991.tb03790.x

12. Fernandez-Martin EM, Heckel G, Schramm Y, García-Aguilar MC. The timing of pupping and molting of the Pacific harbor seal, Phoca vitulina richardii, at Punta Banda Estuary, Baja California, Mexico. Cienc Mar. 2016;42(3): 195–208. doi: 10.7773/cm.v42i3.2615

13. Ruiz-Mar G. Determinación del periodo de lactancia y cuidado materno en la foca de puerto Phoca vitulina richardii y su relación con el disturbio humano en el estero de Punta Banda,Baja California, México. M.Sc. Thesis. Ensenada Center for Scientific Research and Higher Education. Ensenada, Baja California, México. 2016. Available from:

14. Le Boeuf BJ, Crocker DE, Costa DP, Blackwell SB, Webb PM, Houser DS. Foraging ecology of northern elephant seals. Ecological Monographs 2000;70: 353–82.

15. Bjørge A, Thompson D, Hammond P, Fedak M, Bryant E, Aarefjord H, et al. Habitat use and diving behaviour of harbour seals in a coastal archipelago in Norway. In: Blix AS, Walløe L, Ulltang Ø, editors. Developments in Marine Biology. 4: Elsevier Science; 1995. pp. 211–23.

16. Gibble CM, Harvey JT. Food habits of harbor seals (Phoca vitulina richardii) as an indicator of invasive species in San Francisco Bay, California. Mar Mammal Sci. 2015;31(3): 1014–34. doi: 10.1111/mms.12214

17. Luxa K, Acevedo-Gutiérrez A. Food habits of harbor seals (Phoca vitulina) in two estuaries in the central Salish Sea. Aquat Mamm. 2013;39: 10–22. doi: 10.1578/AM.39.1.2013.10

18. Pitcher KW. Stomach contents and feces as indicators of harbor seal (Phoca vitulina) foods in the Gulf of Alaska. Fish B-NOAA. 1980;78: 797–8.

19. Tollit DJ, Steward MJ, Thompson PM, Pierce GJ, Santos MB, Hughes S. Species and size differences in the digestion of otoliths and beaks: implications for estimates of pinniped diet composition. Can J Fish Aquat Sci. 1997;54(1): 105–19. doi: 10.1139/f96-264

20. Bowen WD. Reconstruction of pinniped diets: accounting for complete digestion of otoliths and cephalopod beaks. Can J Fish Aquat Sci. 2000;57: 898–905. doi: 10.1139/f00-032

21. Alamán de Régules R. Hábitos alimentarios de la foca de puerto, Phoca vitulina richardsi, en la Bahía Todos Santos, Baja California, México. M.Sc. Thesis. Autonomous Universityof Baja California. Ensenada, Baja California, México. 2014.

22. Durazo-Rodríguez P. Variabilidad espacial y temporal de los hábitos alimentarios de la foca de puerto (Phoca vitulina richardii) en México. M.Sc. Thesis. Autonomous Universityof Baja California. Ensenada, Baja California, México. 2015.

23. Elorriaga-Verplancken FR, Morales-Luna L, Moreno-Sánchez XG, Mendoza-Salas I. Inferences on the diet of the eastern Pacific harbor seal (Phoca vitulina richardii) at the southern end of its distribution: Stable isotopes and scats analyses. Aquat Mamm. 2013;39(4): 415–21. doi: 10.1578/AM.39.4.2013.415

24. Brassea-Pérez E, Schramm Y, Heckel G, Chong-Robles J, Lago-Lestón A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar Biol. 2019;166(8): 106.

25. Michener RH, Kaufman L. Stable Isotope Ratios as Tracers in Marine Food Webs: An Update. In: Lajtha H, Michener RH, editors. Stable Isotopes in Ecology and Environmental Science. Boston: Blackwell; 2008. pp. 238–82.

26. Newsome SD, Clementz MT, Koch PL. Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mammal Sci. 2010;26(3): 509–72. doi: 10.1111/j.1748-7692.2009.00354.x

27. Hobson KA, Clark RG. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor. 1992;94: 181–8. doi: 10.2307/1368807

28. Hobson KA, Clark RG. Assessing avian diets using stable isotopes. II. Factors influencing diet-tissue fractionation. Condor. 1992;94: 189–97. doi: 10.2307/1368808

29. Bearhop S, Waldron S, Votier SC, Furness RW. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool. 2002;75(5): 451–8. doi: 10.1086/342800 12529846

30. Aurioles-Gamboa D, Koch PL, Le Boeuf BJ. Differences in foraging location of Mexican and California elephant seals: evidence from stable isotopes in pups. Mar Mammal Sci. 2006;22(2): 326–38. doi: 10.1111/j.1748-7692.2006.00023.x

31. Hobson KA, Sease JL, Merrick RL, Piatt JF. Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbon. Mar Mammal Sci. 1997;13(1): 114–32. doi: 10.1111/j.1748-7692.1997.tb00615.x

32. Kurle CM. Stable-isotope ratios of blood components from captive northern fur seals (Callorhinus ursinus) and their diet: applications for studying the foraging ecology of wild otariids. Can J Zool. 2002;80(5): 902–9. doi: 10.1139/z02-069

33. Porras‐Peters H, Aurioles‐Gamboa D, Cruz‐Escalona VH, Koch PL. Trophic level and overlap of sea lions (Zalophus californianus) in the Gulf of California, Mexico. Mar Mammal Sci. 2008;24(3): 554–76. doi: 10.1111/j.1748-7692.2008.00197.x

34. France RL. Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar Ecol Prog Ser. 1995;124: 307–12. doi: 10.3354/meps124307

35. Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D. Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: West JB, Bowen GJ, Dawson TE, Tu KP, editors. Isoscapes. USA: Springer; 2010. pp. 299–318.

36. Minagawa M, Wada E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta. 1984;48(5): 1135–40. doi: 10.1016/0016-7037(84)90204-7

37. Hobson KA, Welch HE. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15 N analysis. Mar Ecol Prog Ser. 1992;84(1): 9–18. doi: 10.3354/meps084009

38. Vanderklift A, Ponsard S. Sources of variation in consumer-diet δ15N enrichments: a meta-analysis. Oecologia. 2003; 136: 169–82. doi: 10.1007/s00442-003-1270-z 12802678

39. Aurioles-Gamboa D, Newsome SD, Salazar-Pico S, Koch PL. Stable isotope differences between sea lions (Zalophus) from the Gulf of California and Galapagos Islands. J Mammal. 2009;90(6): 1410–20. doi: 10.1644/08-MAMM-A-209R2.1

40. Gannes LZ, Martínez del Rio C, Koch P. Natural Abundance Variations in Stable Isotopes and their Potential Uses in Animal Physiological Ecology. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(3): 725–37. doi: 10.1016/s1095-6433(98)01016-2 9683412

41. Altabet MA, Pilskaln C, Thunell R, Pride C, Sigman D, Chavez F, et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Res Pt I. 1999;46(4): 655–79. doi: 10.1016/S0967-0637(98)00084-3

42. Burton RK, Koch PL. Isotopic tracking of foraging and long-distance migration in northeastern Pacific pinnipeds. Oecologia. 1999;119: 578–85. doi: 10.1007/s004420050822 28307717

43. Takai N, Onaka S, Ikeda Y, Yatsu A, Kidokoro H, Sakamoto W. Geographical variations of carbon and nitrogen stable isotopes ratios in squid. J Mar Biol Assoc UK. 2000;80: 675–84.

44. McMahon KW, Hamady LL, Thorrold SR. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr. 2013;58(2): 697–714. doi: 10.4319/lo.2013.58.2.0697

45. Wada E, Hattori A. Nitrogen in the sea: forms, abundance, and rate processes. USA: CRC press; 1990.

46. Goericke R, Fry B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochemical Cycles. 1994;8(1): 85–90. doi: 10.1029/93GB03272

47. Smith RJ, Hobson KA, Koopman HN, Lavigne DM. Distinguishing between populations of fresh and saltwater harbour seals (Phoca vitulina) using stable isotope ratios and fatty acid profiles. Can J Fish Aquat Sci. 1996;53(2): 272–9. doi: 10.1139/f95-192

48. Bearhop S, Adams CE, Waldron S, Fuller RA, MacLeod H. Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol. 2004;73(5): 1007–12. doi: 10.1111/j.0021-8790.2004.00861.x

49. Newsome SD, Tinker MT, DH M, Oftedal OT, Ralls K, Staedler MM, et al. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology. 2009;90(4): 961–74. doi: 10.1890/07-1812.1 19449691

50. Hutchinson GE. An Introduction to Population Biology. USA: Yale University Press; 1978.

51. Cherel Y, Hobson KA, Guinet C, Vanpe C. Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol. 2007;76(4): 826–36. doi: 10.1111/j.1365-2656.2007.01238.x 17584388

52. Das K, Beans C, Holsbeek L, Mauger G, Berrow SD, Rogan E, et al. Marine mammals from northeast Atlantic: relationship between their trophic status as determined by δ13C and δ15N measurements and their trace metal concentrations. Marine Environmental Research. 2003;56(3): 349–65. doi: 10.1016/S0141-1136(02)00308-2 12738219

53. Layman CA, Arrington DA, Montaña CG, Post DM. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 2007;88(1): 42–8. doi: 10.1890/0012-9658(2007)88[42:csirpf];2 17489452

54. Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL. A niche for isotopic ecology. Front Ecol Environ. 2007;5(8): 429–36. doi: 10.1890/060150.1

55. Odell DK. Studies on the biology of the California sea lion and the northern elephant seal on San Nicolas Island. Los Angeles, USA: University of California; 1972.

56. Cottrell PE, Jeffries S, Beck B, Ross PS. Growth and development in free-ranging harbor seal (Phoca vitulina) pups from southern British Columbia, Canada. Mar Mammal Sci. 2002;18(3): 721–33. doi: 10.1111/j.1748-7692.2002.tb01069.x

57. Oftedal OT, Bowen WD, Widdowson EM, Boness DJ. The prenatal molt and its ecological significance in hooded and harbor seals. Can J Zool. 1991;69(9): 2489–93. doi: 10.1139/z91-351

58. Stutz SS. Foetal and Postpartum Whitecoat Pelage in Phoca vitulina. J Fish Res Board Can. 1966;23(4): 607–9. doi: 10.1139/f66-051

59. Ling JK, Thomas CDB. The skin and hair of the southern elephant seal, Mirounga leonina (Linn.). II. Pre-natal and early post-natal development and moulting. Aust J Zool. 1967;15(349–365). doi: 10.1071/ZO9670349

60. Rau GH, Sweeney RE, Kaplan IR. Plankton 13C: 12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Research Part A Oceanographic Research Papers. 1982;29(8): 1035–9.

61. Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol. 2011;80(3): 595–602. doi: 10.1111/j.1365-2656.2011.01806.x 21401589

62. Jackson AL. Introduction to SIBER 2019 [Accessed 22 April 2019]. Available from:

63. Phillips DL. Converting isotope values to diet composition: the use of mixing models. J Mammal. 2012;93(2): 342–52. doi: 10.1644/11-MAMM-S-158.1

64. Froese R, Pauly D. FishBase. World Wide Web electronic publication., version (02/2019). 2019.

65. Hobson KA. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia. 1999;120 314–26. doi: 10.1007/s004420050865 28308009

66. Nakamura K, Schoeller DA, Winkler FJ, Schmidt HL. Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biol Mass Spectrom. 1982;9(9): 390–4. doi: 10.1002/bms.1200090906 7139058

67. Hobson KA, Schell DM, Renouf D, Noseworthy E. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Can J Fish Aquat Sci. 1996;53(3): 528–33.

68. Lesage V, Hammill MO, Kovacs KM. Diet- tissue fractionation of stable carbon and nitrogen isotopes in phocids seals. Mar Mammal Sci. 2002;18(1): 182–93. doi: 10.1111/j.1748-7692.2002.tb01027.x

69. Yang D-Y, Chen Y-W, Gunn JM, Belzile N. Selenium and mercury in organisms: interactions and mechanisms. Environmental Reviews. 2008;16(NA): 71–92.

70. Elorriaga-Verplancken F, Morales-Luna L, Heckel G, Schramm Y. Foraging ecology of harbour seals (Phoca vitulina) and Northern elephant seals (Mirounga angustirostris) from Baja California, Mexico: inferences from stable isotopes in pups. J Mar Biol Assoc UK. 2016;96(4): 903–8. doi: 10.1017/S0025315415002143

71. Pablo-Rodríguez N, Aurioles-Gamboa D, Montero-Muñoz JL. Niche overlap and habitat use at distinct temporal scales among the California sea lions (Zalophus californianus) and Guadalupe fur seals (Arctocephalus philippii townsendi). Mar Mammal Sci. 2015;32(2): 466–89. doi: 10.1111/mms.12274

72. Elorriaga-Verplancken FR, Morales-Luna L, Moreno-Sánchez XG, Mendoza-Salas I. Inferences on the diet of the eastern Pacific harbor seal (Phoca vitulina richardii) at the southern end of its distribution: Stable isotopes and scats analyses. Aquat Mamm. 2013;39(4): 415–21. doi: 10.1578/AM.39.4.2013.415

73. Cavole LM, Demko AM, Diner RE, Giddings A, Koester I, Pagniello CM, et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography. 2016;29(2): 273–85.

74. Martínez del Rio C, Sabat P, Anderson-Sprecher R, Gonzalez SP. Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia. 2009;161(1): 149–59. doi: 10.1007/s00442-009-1357-2 19424728

75. Thomson JA, Heithaus MR, Burkholder DA, Vaudo JJ, Wirsing AJ, Dill LM. Site specialists, diet generalists? Isotopic variation, site fidelity, and foraging by loggerhead turtles in Shark Bay, Western Australia. 2012;453: 213–26. doi: 10.3354/meps09637 pub.1071170128.

76. Beltrán-Félix JL, Hammann MG, Chagoya-Guzmán A, Alvarez-Borrego S. Ichthyofauna of Estero de Punta Banda, Ensenada, Baja California, Mexico, before a major dredging operation. Cienc Mar. 1986;12(1): 79–92. doi: 10.7773/cm.v12i1.483

77. McPeek MA. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. The American Naturalist. 1996;148: S124–S38.

78. Allen LG, Pondella DJ, Horn MH. The ecology of marine fishes: California and adjacent waters. 1st ed ed. USA: University of California Press; 2006.

79. Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R. Measuring individual‐level resource specialization. Ecology. 2002;83(10): 2936–41.

80. Laidre KL, Stirling I, Lowry LF, Wiig Ø, Heide-Jørgensen MP, Ferguson SH. Quantifying the sensitivity of Arctic marine mammals to climate‐induced habitat change. Ecological Applications. 2008;18(sp2): S97–S125.

81. Fry B, Wainright SC. Diatom sources of 13C-rich carbon in marine food webs. Mar Ecol Prog Ser. 1991;76: 149–57.

82. Payne PM, Selzer LA. The distribution, abundance and selected prey of the harbor seal, Phoca vitulina concolor, in southern New England. Mar Mammal Sci. 1989;5(2): 173–92 doi: 10.1111/j.1748-7692.1989.tb00331.x

83. Sigman DM, Granger J, DiFiore PJ, Lehmann MM, Ho R, Cane G, et al. Coupled nitrogen and oxygen isotope measurements of nitrate along the eastern North Pacific margin. Global Biogeochemical Cycles. 2005;19(4).

84. McMahon KW, Hamady LL, Thorrold SR. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr. 2013;58(2): 697–714.

85. Hirons AC, Schell DM, Finney BP. Temporal records of δ13C and δ15N in North Pacific pinnipeds: inferences regarding environmental change and diet. Oecologia. 2001;129: 591–601. doi: 10.1007/s004420100756 24577700

86. Newsome SD, Koch PL, Etnier MA, Aurioles‐Gamboa D. Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar Mammal Sci. 2006;22(3): 556–72. doi: 10.1111/j.1748-7692.2006.00043.x

87. Elorriaga-Verplancken F, Aurioles-Gamboa D, Newsome SD, Martínez-Díaz S. δ15N and δ13C values in dental collagen as a proxy for age-and sex-related variation in foraging strategies of California sea lions. Mar Biol. 2013;160(3): 641–52. doi: 10.1007/s00227-012-2119-y

88. Páez-Rosas D, Aurioles-Gamboa D. Spatial variation in the foraging behaviour of the Galapagos sea lions (Zalophus wollebaeki) assessed using scat collections and stable isotope analysis. J Mar Biol Assoc UK. 2014;94(6): 1099–107. doi: 10.1017/S002531541300163X

89. Amador-Capitanachi M, Moreno-Sánchez X, Juárez-Ruiz A, Ferretto G, Elorriaga-Verplancken F. Trophic Variation Between the Two Existing Guadalupe Fur Seal Colonies on Guadalupe Island and the San Benito Archipelago, Mexico. Aquat Mamm. 2017;43(1): 14–25. doi: 10.1578/AM.43.1.2017.14

90. Härkönen T. Influence of Feeding on Haul-Out Patterns and Sizes of Sub-Populations in Harbor Seals. Netherlands Journal of Sea Research 1987;21: 331–9.

91. Härkönen T, Harding KC. Spatial structure of harbour seal populations and the implications thereof. Can J Zool. 2001;79(12): 2115–27. doi: 10.1139/z01-172

92. Tollit DJ, Black AD, Thompson PM, Mackay A, Corpe HM, Wilson B, et al. Variations in harbour seal Phoca vitulina diet and dive-depths in relation to foraging habitat. J Zool. 1998;244(02): 209–22. doi: 10.1111/j.1469-7998.1998.tb00026.x

93. Womble JN, Gende SM. Post-breeding season migrations of a top predator, the harbor seal (Phoca vitulina richardii), from a marine protected area in Alaska. PLoS One. 2013;8(2): 1–15. doi: 10.1371/journal.pone.0055386 23457468

94. McMahon KW, McCarthy MD. Embracing variability in amino acid δ15N fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere. 2016;7(12).

95. Elorriaga-Verplancken FR, Hadrys LM-L, Moreno-Sánchez X, Mendoza-Salas I. Inferences on the diet of the eastern Pacific harbor seal (Phoca vitulina richardii) at the southern end of its distribution: stable isotopes and scats analyses. Aquatic Mammals. 2013;39(4). doi: 10.1578/AM.39.4.2013

96. Boyd I. Time and energy constraints in pinniped lactation. The American Naturalist. 1998;152(5): 717–28. doi: 10.1086/286202 18811346

Článek vyšel v časopise


2020 Číslo 1