Cochlear dysfunction is associated with styrene exposure in humans


Autoři: Mariola Sliwinska-Kowalska aff001;  Adrian Fuente aff002;  Ewa Zamyslowska-Szmytke aff001
Působiště autorů: Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland aff001;  Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Québec, Canada aff002;  École d’orthophonie et d’audiologie, Faculté de médecine, Université de Montréal, Québec, Canada aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227978

Souhrn

Aim

Occupational exposure to styrene has been shown to be associated with an increased probability of developing hearing loss. However, the sites of lesions in the auditory system in humans remain unknown. The aim of this study was to investigate the possible adverse effects of styrene exposure on the cochlea of human subjects.

Design

The hearing function of 98 styrene-exposed male workers from the glass fibre-reinforced plastics industry (mean concentration of 55 mg/m3) was evaluated bilaterally using pure-tone audiometry (1000–16000 Hz), distortion product otoacoustic emissions (DPOAEs), and auditory brainstem response (ABR). The results were compared to a group of 111 male workers exposed to noise (above 85 dBA) and 70 male white-collar workers exposed to neither noise nor solvents. Age and noise exposure levels were accounted for as confounding variables in all statistical models.

Results

Styrene exposure was significantly associated with poorer pure-tone thresholds (1–8 kHz), lower DPOAE amplitudes (5–6 kHz), and shorter wave V latencies in both ears compared to control-group subjects. Similar results were found among noise-exposed subjects. A further analysis with wave V latency showed that styrene-exposed subjects showed significantly shorter latencies than expected according to normative data. These results suggest that occupational exposure to styrene at moderate concentrations is associated with cochlear dysfunction, at least at high frequencies. DPOAEs may be considered a valuable diagnostic tool in hearing conservation programs in workers exposed to styrene.

Klíčová slova:

Audiology – Deafness – Ears – Hearing – Noise reduction – Plastics – Public and occupational health – Social systems


Zdroje

1. Pahwa R, Kalra J. (1993). A critical review of the neurotoxicity of styrene in humans. Vet Hum Toxicol. 1993; 35: 516–520. 7980742

2. Bergamaschi E, Smargiassi A, Mutti A, Vettori S, Franchini R, Mergler D. Peripheral markers of cathecolaminergic dysfunction and symptoms of neurotoxicity among styrene exposed workers. Int Arch Occup Environ Health. 1997; 69: 209–214. doi: 10.1007/s004200050138 9049672

3. Mutti A, Vescoci P, Falzoi M, Arfini G, Valenti G, Franch I. Neuroendocrine effects of styrene on occupationally exposed workers. Scand J Work Environ Health. 1984; 10: 225–228. doi: 10.5271/sjweh.2340 6436966

4. Luderer U, Tornero-Velez R, Shay T, Rappaport S, Heyer N, Echeverria D. Temporal association between serum prolactin concentration and exposure to styrene. Occup Environ Med. 2004; 61: 325–333. doi: 10.1136/oem.2002.005561 15031390

5. Verplanke A, Herber R. Effects on the kidney of occupational exposure to styrene. Int Arch Occup Environ Health. 1998; 71: 47–52. doi: 10.1007/s004200050249 9523249

6. Brodkin C, Moon J, Camp J, Echeverria D, Redlich C, Willson R, et al. (2001). Serum hepatic biochemical activity in two populations of workers exposed to styrene. Occup Environ Med. 2001; 58: 95–102. doi: 10.1136/oem.58.2.95 11160987

7. Christensen M, Vestergaard J, d’Amore F, Gørløv J, Toft G, Ramlau-Hansen C, Stokholm Z, Iversen I, Nissen M, Kolstad H. Styrene exposure and risk of lymphohematopoietic malignancies in 73,036 reinforced plastics workers. Epidemiology. 2018; 29: 342–351. doi: 10.1097/EDE.0000000000000819 29533250

8. Johnson A. Relationship between styrene exposure and hearing loss: review of human studies. Int J Occup Med Environ Health. 2007; 20(4): 315–325. doi: 10.2478/v10001-007-0040-2 18165194

9. Zamyslowska-Szmytke E, Sliwinska-Kowalska M. Vestibular and balance findings in nonsymptomatic workers exposed to styrene and dichloromethane. Int J Audiol. 2011; 50(11): 815–822. doi: 10.3109/14992027.2011.599872 21929376

10. Pryor G, Rebert C, Howd R. Hearing loss in rats caused by inhalation of mixed xylenes and styrene. J Appl Toxicol. 1987; 7: 55–61. doi: 10.1002/jat.2550070110 3611598

11. Mujiser H, Hoogendijk E, Hooisma J. The effects of occupational exposure to styrene on high-frequency hearing thresholds. Toxicol. 1988; 49: 331–340.

12. Möller C, Ödkvlst L, Larsby B, Tham R, Ledin T, Bergholtz L. Otoneurological findings in workers exposed to styrene. Scand J Work Environ Health. 1990; 16: 189–194. doi: 10.5271/sjweh.1795 2382121

13. Calabrese G, Martini A, Sessa G, Bartolucci G, Marcuzzo G, De Rosa E. Otoneurological study in workers exposed to styrene in the fiberglass industry. Int Arch Occup Environ Health. 1996; 68(4): 219–223. doi: 10.1007/bf00381431 8738350

14. Morioka I, Kuroda M, Miyashita K, Takeda S. Evaluation of organic solvent ototoxicity by the upper limit of hearing. Arch Environ Health. 1999; 38(2): 252–257.

15. Morata T C, Johnson A, Nylèn P, Svensson E, Cheng J, Krieg E, et al. Audiometric findings in workers exposed to low levels of styrene and noise. J Occup Environ Med. 2002; 44(9): 806–814. doi: 10.1097/00043764-200209000-00002 12227672

16. Sliwinska-Kowalska M, Zamyslowska-Szmytke E, Szymczak W, Kotylo P, Fiszer M, Weselowski W, et al. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise. J Occup Environ Med. 2003; 45(1): 15–24. doi: 10.1097/00043764-200301000-00008 12553175

17. Morioka I, Miyai N, Yamamoto H, Miyashita K. Evaluation of combined effect of organic solvents and noise by the upper limit of hearing. Industrial Health. 1999; 54(5): 341–46.

18. Sass-Kortsak A, Corey P, Robertson J. An investigation of the association between exposure to styrene and hearing loss. Ann Epidemiol. 1995; 5(1): 15–24. doi: 10.1016/1047-2797(94)00036-s 7728281

19. Campo P, Lataye R, Loquet G, Bonnet P. Styrene-induced hearing loss: a membrane insult. Hear Res. 2001; 154(1–2): 170–180. doi: 10.1016/s0378-5955(01)00218-0 11423228

20. Venet T, Campo P, Thomas A, Cour C, Rieger B, Cosnier F. The tonotopicity of styrene-induced hearing loss depends on the associated noise spectrum. Neurotoxicology and Teratology. 2015; 48: 56–63. doi: 10.1016/j.ntt.2015.02.003 25689156

21. Zamyslowska-Szmytke E, Fuente A, Niebudek-Bogusz E, Sliwinska-Kowalska M. Temporal processing disorder associated with styrene exposure. Audiol Neurotol. 2009; 14: 296–302.

22. Johnson A, Morata T C, Lindblad A, Nylén P, Svensson E, Krieg E, et al. Audiological findings in workers exposed to styrene alone or in concert with noise. Noise Health. 2006; 8: 45–57. doi: 10.4103/1463-1741.32467 17513895

23. Morata T C, Little M B. Suggested guidelines for studying the combined effects of occupational to noise and chemicals on hearing. Noise Health 2002; 4: 73–87. 12678930

24. International Standards Organization. International Standards for Acoustics. Audiometric test methods. Part 1: Basic pure tone air and bone conduction threshold audiometry (ISO 8253–1). 1989. Geneva, Switzerland: ISO.

25. Attias J, Bresloff I, Reshef I, Horowitz G, Furman V. Evaluating noise induced hearing loss with distortion product otoacoustic emissions. British Journal of Audiology. 1998; 32: 39–46. doi: 10.3109/03005364000000049 9643306

26. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2009. Springer-Verlag New York.

27. Canty A. Ripley B. Boot: Bootstrap R (S-Plus) Functions. 2015. R package version 1.3–20.

28. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2018. Vienna, Austria. URL

29. Effron B. Better bootstrap confidence intervals. Journal of the American Statistical Association. 1987; 82: 171–185.

30. Davidson A C, Hinkley D V. Bootstrap methods and their application. Cambridge Series in Statistical and Probabilistic Mathematics. 1997. Cambridge University Press.

31. Prosser S, Arslan E. Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss. Audiology. 1987; 26: 179–187. 3662941

32. Sharpe D E. Your Chi-Square test is statistically significant: now what?. Practical Assessment, Research & Evaluation. 2015; 20: 1–10.

33. Lonsbury-Martin B, Cutler W, Martin G. Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. Journal of the Acoustical Society of America. 1991; 89: 1749–1759. doi: 10.1121/1.401009 2045583

34. O-Uchi T., Kanzaki J., Satoh Y., Yoshihara S., Ogata A., Inoue Y., et al. Age-related changes in evoked otoacoustic emission in normal-hearing ears. Acta oto-Laryngologica Supplementum. 1994; 514: 89–94. doi: 10.3109/00016489409127569 8073895

35. Uchida Y, Ando F, Shimokata H, Sugiura S, Ueda H, Nakashima T. The effects of aging on distortion-product otoacoustic emissions in adults with normal hearing. Ear and Hearing. 2008; 29(2): 176–184. doi: 10.1097/aud.0b013e3181634eb8 18595184

36. Vinck B, Van Cauwenberge P, Leroy L, Corthals B. Sensitivity of transient evoked and distortion product otoacoustic emissions to the direct effects of noise on the human cochlea. International Journal of Audiology. 1999; 38: 44–52.

37. Shupak A, Tal D, Sharoni Z, Oren M, Ravid A, Pratt A. Otoacoustic emissions in early noise-induced hearing loss. Otology and Neuro-otology. 2007; 28: 745–752.

38. Loquet G, Campo P, Lataye R. Comparison of toluene-induced and styrene-induced hearing losses. Neurotoxicol Teratol. 1991; 21: 689–697.

39. Makitie A, Pirvola U, Pyykkō I, Sakakibara H, Riihimäki V, Ylikoski J. The ototoxic interaction of styrene and noise. Hear Res. 2003; 179: 9–20. doi: 10.1016/s0378-5955(03)00066-2 12742234

40. Sisto R, Cerini L, Gatto M, Gordiani G, Sanjust F. Otoacoustic emission sensitivity to exposure to styrene and noise. J Acoust Soc Am. 2013; 134: 3739–3748. doi: 10.1121/1.4824618 24180784

41. Jerger J, Hall J. Effects of age and sex on auditory brainstem response. Arch Otolaryngol. 1980; 106(7): 387–91. doi: 10.1001/archotol.1980.00790310011003 7387524

42. Lopez-Escamez J, Salguero G, Salinero J. Age and sex differences in latencies of waves I, III, and V in auditory brain stem response of normal hearing subjects. Acta otolaryngol. 1999; 53: 09–115.

43. Mohammad FT, Gharib K, Teimuri H. Study of Age Effect on Brainstem Auditory Evoked Potential Waveforms. Journal of Medical Sciences. 2007; 7: 1362–1365.

44. Pryor G. Solvent-induced neurotoxicity: effects and mechanisms. 1995. In: Chang LW, Dyer RS, eds. Principles of Neurotoxicity. New York: Marcel Dekker, pp. 377–400.

45. Bonfiglioli R, Carnevali L, Di Lello M, Violante F. Bilateral hearing loss after dichloromethane poisoning: a case report. American Journal of Industrial Medicine. 2014; 57: 254–257. doi: 10.1002/ajim.22257 24085714

46. Fuente A, McPherson B, Hickson L. Central Auditory dysfunction associated with exposure to a mixture of solvents. International Journal of Audiology. 2011; 50: 857–865. doi: 10.3109/14992027.2011.605805 21936752

47. Fuente A, McPherson B, Hickson L. Auditory dysfunction associated with solvent exposure. BMC Public Health. 2013; 13: 39. doi: 10.1186/1471-2458-13-39 23324255

48. Musiek F, Chermak G. Psychophysical and behavioral peripheral and central auditory tests. 2015. In Aminoff M.J., Boller F., Swaab D.F. eds. Handbook of Clinical Neurology, The human auditory system: Fundamental organization and clinical disorders, 129, Waltham: Elsevier, pp. 313–332.


Článek vyšel v časopise

PLOS One


2020 Číslo 1