Evaluation of KRAS, NRAS and BRAF mutations detection in plasma using an automated system for patients with metastatic colorectal cancer

Autoři: Claire Franczak aff001;  Andréa Witz aff001;  Karen Geoffroy aff001;  Jessica Demange aff001;  Marie Rouyer aff001;  Marie Husson aff001;  Vincent Massard aff002;  Céline Gavoille aff002;  Aurélien Lambert aff002;  Pauline Gilson aff003;  Nicolas Gambier aff004;  Julien Scala-Bertola aff004;  Jean-Louis Merlin aff003;  Alexandre Harlé aff003
Působiště autorů: Institut de Cancérologie de Lorraine, Service de Biopathologie, Vandoeuvre les Nancy, France aff001;  Institut de Cancérologie de Lorraine, Département d’oncologie médicale, Vandoeuvre les Nancy, France aff002;  Université de Lorraine, CNRS UMR 7039 CRAN, Institut de Cancérologie de Lorraine, Service de Biopathologie, Nancy, France aff003;  CHRU Nancy, Department of Clinical Pharmacology and Toxicology, Nancy, France aff004;  Université de Lorraine, UMR 7365 CNRS-UL, IMoPA, Vandœuvre-lès-Nancy, France aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227294



Cell-free DNA detection is becoming a surrogate assay for tumor genotyping. Biological fluids often content a very low amount of cell-free tumor DNA and assays able to detect very low allele frequency mutant with a few quantities of DNA are required. We evaluated the ability of the fully-automated molecular diagnostics platform Idylla for the detection of KRAS, NRAS and BRAF hotspot mutations in plasma from patients with metastatic colorectal cancer (mCRC).

Materials and methods

First, we evaluated the limit of detection of the system using two set of laboratory made samples that mimic mCRC patient plasma, then plasma samples from patients with mCRC were assessed using Idylla system and BEAMing digital PCR technology.


Limits of detection of 0.1%, 0.4% and 0.01% for KRAS, NRAS and BRAF respectively have been reached. With our laboratory made samples, sensitivity up to 0.008% has been reached. Among 15 patients’ samples tested for KRAS mutation, 2 discrepant results were found between Idylla and BEAMing dPCR. A 100% concordance between the two assays has been found for the detection of NRAS and BRAF mutations in plasma samples.


The Idylla system does not reach as high sensitivity as assays like ddPCR but has an equivalent sensitivity to modified NGS technics with a lower cost and a lower time to results. These data allowed to consider the Idylla system in a routine laboratory workflow for KRAS, NRAS and BRAF mutations detection in plasma.

Klíčová slova:

Blood plasma – Circulating tumor DNA – DNA – DNA extraction – DNA fragmentation – Mutation – Mutation detection – Polymerase chain reaction


1. Mandel P, Mettais P. Les acides nucléiques du plasma sanguin chez l'homme. C R Acad Sci Paris 1948;142: 241–243.

2. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37: 646–650. 837366

3. Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016;35: 347–76. doi: 10.1007/s10555-016-9629-x 27392603

4. Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc Natl Acad Sci U S A 2015;112: 3178–3179. doi: 10.1073/pnas.1501321112 25733911

5. Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS One 2011;6: e23418. doi: 10.1371/journal.pone.0023418 21909401

6. Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27: 1386–1422. doi: 10.1093/annonc/mdw235 27380959

7. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011;12: 594–603. doi: 10.1016/S1470-2045(10)70209-6 21163703

8. Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014;20: 430–5. doi: 10.1038/nm.3511 24658074

9. Thierry AR, El Messaoudi S, Mollevi C, Raoul JL, Guimbaud R, Pezet D, et al. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Ann Oncol 2017;28: 2149–2159. doi: 10.1093/annonc/mdx330 28911069

10. Bachet JB, Bouché O, Taieb J, Dubreuil O, Garcia ML, Meurisse A, et al. RAS mutation analysis in circulating tumor DNA from patients with metastatic colorectal cancer: the AGEO RASANC prospective multicenter study. Ann Oncol. 2018;29: 1211–1219. doi: 10.1093/annonc/mdy061 29438522

11. Janku F, Claes B, Huang HJ, Falchook GS, Devogelaere B, Kockx M, et al. BRAF mutation testing with a rapid, fully integrated molecular diagnostics system. Oncotarget. 2015;6: 26886–94. doi: 10.18632/oncotarget.4723 26330075

12. Harlé A, Salleron J, Franczak C, Dubois C, Filhine-Tressarieu P, Leroux A, et al. Detection of BRAF mutation using a Fully Automated Platform and Comparison with HighResolution Melting, Real-Time Allele Specific Amplification, Immunohistochemistry and NextGeneration Sequencing Assays, for patients with Metastatic Melanoma. PLoS One 2016;11: e0153576 doi: 10.1371/journal.pone.0153576 27111917

13. Solassol J, Vendrell J, Märkl B, Haas C, Bellosillo B, Montagut C, et al. Multi-center evaluation of the fully automated PCR-based Idylla KRAS mutation assay for rapid KRAS mutation status determination on formalin-fixed paraffin-embedded tissue of human colorectal cancer. PLoS One 2016;11: e0163444. doi: 10.1371/journal.pone.0163444 27685259

14. Colling R, Wang LM, Soilleux E. Automated PCR detection of BRAF mutations in colorectal adenocarcinoma: a diagnostic test accuracy study. J Clin Pathol 2016;69: 398–402. doi: 10.1136/jclinpath-2015-203345 26537294

15. Johnston L, Power M, Sloan P, Long A, Silmon A, Chaffey B, et al. Clinical performance evaluation of the Idylla NRAS-BRAF mutation test on retrospectively collected formalin-fixed paraffin-embedded colorectal cancer tissue. J Clin Pathol 2018;71: 336–343. doi: 10.1136/jclinpath-2017-204629 28899979

16. Janku F, Huang HJ, Claes B, Falchook GS, Fu S, Hong D, et al. BRAF mutation testing in cell-free DNA from the plasma of patients with advanced cancers using a rapid, automated molecular diagnostics system. Mol Cancer Ther 2016;15: 1397–404. doi: 10.1158/1535-7163.MCT-15-0712 27207774

17. Schreuer M, Jansen Y, Planken S, Chevolet I, Seremet T, Kruse V, et al. Combination of debrafenib plus trametinib for BRAF and MEK inhibitor pretreated patients with advanced BRAFV600-mutant melanoma:an open-label, single arm, dual-centre, phase 2 clinicaltrial. Lancet Oncol 2017;18: 464–472. doi: 10.1016/S1470-2045(17)30171-7 28268064

18. Colling R, Wang LM, Soilleux E. Validating a fully automated real-time PCR-based system for use in the molecular diagnostic analysis of colorectal carcinoma: a comparison with NGS and IHC. J Clin Pathol 2017;70: 610–614. doi: 10.1136/jclinpath-2017-204356 28292978

19. Seremet T, Planken S, Schreuer M, Jansen Y, Delaunoy M, El Housni H, et al. Illustrative cases for monitoring by quantitative analysis of BRAF/NRAS ctDNA mutations in liquid biopsies of metastatic melanoma patients who gained clinical benefits from anti-PD1 antibody therapy. Melanoma Res 2018;28: 65–70. doi: 10.1097/CMR.0000000000000415 29227333

20. Francis G and Stein S. Circulating Cell-Free Tumour DNA in the Management of Cancer. Int J Mol Sci 2015;16: 14122–14142. doi: 10.3390/ijms160614122 26101870

21. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods 2006;3: 95–97. doi: 10.1038/nmeth850 16432518

22. Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D, et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat methods 2006;3(7): 551–9. doi: 10.1038/nmeth898 16791214

23. Zhang J, Zheng J, Yang Y, Lu J, Gao J, Lu T, et al. Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancerpatients: analysis of 1,110 cases. Sci Rep 2015;5: 18678. doi: 10.1038/srep18678 26691448

24. Hamzehzadeh L, Khadangi F, Ghayoor Karimiani E, Pasdar A, Kerachian MA, et al. Common KRAS and NRAS gene mutations in sporadic colorectal cancer in Northeastern Iranian patients. Curr Probl Cancer 2018. pii: S0147-0272(18)30038-2.

25. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14: 985–990. doi: 10.1038/nm.1789 18670422

26. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget 2016;7: 48832–48841. doi: 10.18632/oncotarget.9453 27223063

27. Lissa D, Robles AI. Methylation analyses in liquid biopsy. Transl Lung Cancer Res 2016;5: 492–504. doi: 10.21037/tlcr.2016.10.03 27826530

28. El Messaoudi S, Rolet F, Mouliere F, Thierry AR. Circulating cell free DNA: Preanalytical considerations. Clin Chim Acta 2013;424: 222–230 doi: 10.1016/j.cca.2013.05.022 23727028

29. Medina Diaz I, Nocon A, Mehnert DH, Fredebohm J, Diehl F, Holtrup F. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One 2016;11: e0166354. doi: 10.1371/journal.pone.0166354 27832189

30. Henao Diaz E, Yachnin J, Grönberg H, Lindberget J. The In Vitro Stability of Circulating Tumour DNA. PLoS One 2016;11: e0168153. doi: 10.1371/journal.pone.0168153 27959945

31. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell 2016;164:57–68. doi: 10.1016/j.cell.2015.11.050 26771485

32. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med 2018;10(466).

33. Grasselli J, Elez E, Caratù G, Matito J, Santos C, Macarulla T, et al. Concordance of blood- and tumor-based detection of RAS mutation to guide anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol 2017;28: 1294–1301. doi: 10.1093/annonc/mdx112 28368441

34. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011;83: 8604–8610. doi: 10.1021/ac202028g 22035192

35. Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012;4: 136ra168.

36. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014;20: 548–554 doi: 10.1038/nm.3519 24705333

37. Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nature biotechnology 2016;34: 547–555 doi: 10.1038/nbt.3520 27018799

38. Pécuchet N, Rozenholc Y, Zonta E, Pietraz D, Didelot A, Combe P, et al. Analysis of base-position error rate of next-generation sequencing to detect tumor mutations in circulating DNA. Clin Chem 2016;62: 1492–1503. doi: 10.1373/clinchem.2016.258236 27624137

39. Harlé A, Filhine-Tresarrieu P, Husson M, Boidot R, Rouyer M, Dubois C, et al. Rare RAS Mutations in Metastatic Colorectal Cancer Detected During Routine RAS Genotyping Using Next Generation Sequencing. Target Oncol 2016;11: 363–70. doi: 10.1007/s11523-015-0404-7 26661077

40. Franczak C, Kandathil SM, Gilson P, Husson M, Rouyer M, Demange J, et al. Uncommon mutational profiles of metastatic colorectal cancer detected during routine genotyping using next generation sequencing. Sci Rep 2019;9: 7083. doi: 10.1038/s41598-019-43646-0 31068650

41. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. Non-V600 BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. J Clin Oncol 2017;35: 2624–2630. doi: 10.1200/JCO.2016.71.4394 28486044

42. Shinozaki E, Yoshino T, Yamazaki K, Muro K, Yamaguchi K, Nishina T, et al. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study. Br J Cancer 2017;117: 1450–1458. doi: 10.1038/bjc.2017.308 28972961

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden