cagA gene EPIYA motif genetic characterization from Colombian Helicobacter pylori isolates: Standardization of a molecular test for rapid clinical laboratory detection


Autoři: Eliana Rocío Rodríguez Gómez aff001;  William Otero Regino aff002;  Pedro A. Monterrey aff003;  Alba Alicia Trespalacios Rangel aff001
Působiště autorů: Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia aff001;  Gastroenterology Unit, Clínica Fundadores, Bogotá, Colombia aff002;  School of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227275

Souhrn

The aim of this work was to determine current cagA gene EPIYA motifs present in Colombian Helicobacter pylori isolates using a fast and reliable molecular test. DNA from eighty-five Helicobacter pylori-cagA positive strains were analyzed. Strains were obtained from patients diagnosed with functional dyspepsia at Clínica Fundadores in Bogotá. The 3' region of the cagA gene was amplified through conventional Polymerase Chain Reaction (PCR). Obtained amplicons were sequenced using the Sanger method and analyzed with bioinformatics tools. Additionally, a significant Spearman correlation coefficient was determined between the patients' age and the number of EPIYA-C repeats; with p values < 0.05 considered significant. Estimates were obtained using a 95% CI. The 3´ variable region of the cagA gene was amplified and PCR products of the following sizes corresponded to the following EPIYA motifs: 400 bp: EPIYA AB, 500 bp: EPIYA ABC, 600 bp: EPIYA ABCC and 700 bp: ABCCC. A single PCR band was observed for 58 out of 85 Helicobacter pylori isolates, with an EPIYA distribution motif as follows: 7/85 AB (8.2%), 34/85 ABC (40%), 26/85 ABCC (30.6%) and 18/85 ABCCC (21.2%). However, in 27 out of 85 Helicobacter pylori isolates, two or more bands were observed, where the most predominant cagA genotype were ABC-ABCC (26%, 7/27) and ABCC-ABCCC (22.2%, 6/27). A direct proportionality between the number of EPIYA-C repeats and an increase in the patients’ age was observed, finding a greater number of EPIYA ABCC and ABCCC repeats in the population over 50 years old. All isolates were of the Western cagA type and 51.8% of them were found to have multiple EPIYA-C repeats. These standardized molecular test allowed to identify the number of EPIYA C motifs based on band size.

Klíčová slova:

Co-infections – DNA sequence analysis – Gastric cancer – Gastrointestinal infections – Helicobacter pylori – Polymerase chain reaction – Sequence alignment – Sequence motif analysis


Zdroje

1. Hayashi T, Senda M, Suzuki N, Nishikawa H, Ben C, Tang C, et al. Differential mechanisms for SHP2 binding and activation are exploited by geographically distinct Helicobacter pylori CagA Oncoproteins. Cell Rep. 2017;20: 2876–2890. doi: 10.1016/j.celrep.2017.08.080 28930683

2. Piazuelo MB, Epplein M, Correa P. Gastric cancer: an infectious disease. Infect Dis Clin North Am. 2010;24: 853–869. doi: 10.1016/j.idc.2010.07.010 20937454

3. Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci. 2011;102: 36–43. doi: 10.1111/j.1349-7006.2010.01743.x 20942897

4. Higashi H. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA Protein. Science (80-). 2002;295: 683–686. doi: 10.1126/science.1067147 11743164

5. Brandt S, Kwok T, Hartig R, Konig W, Backert S. NF- B activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci. 2005;102: 9300–9305. doi: 10.1073/pnas.0409873102 15972330

6. Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96: 835–843. doi: 10.1111/j.1349-7006.2005.00130.x 16367902

7. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci. 2002;99: 14428–14433. doi: 10.1073/pnas.222375399 12391297

8. Xia Y, Yamaoka Y, Zhu Q, Matha I, Gao X. A comprehensive sequence and disease correlation analyses for the C-Terminal region of CagA protein of Helicobacter pylori. Ahmed N, editor. PLoS One. 2009;4: e7736. doi: 10.1371/journal.pone.0007736 19893742

9. Basso D, Zambon C, Letley DP, Stranges A, Marchet A, Rhead JL, et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008;135: 91–99. doi: 10.1053/j.gastro.2008.03.041 18474244

10. Ferreira RM, Machado JC, Leite M, Carneiro F, Figueiredo C. The number of Helicobacter pylori CagA EPIYA C tyrosine phosphorylation motifs influences the pattern of gastritis and the development of gastric carcinoma. Histopathology. 2012;60: 992–998. doi: 10.1111/j.1365-2559.2012.04190.x 22348604

11. Beltrán-Anaya FO, Poblete TM, Román-Román A, Reyes S, de Sampedro J, Peralta-Zaragoza O, et al. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population. BMC Gastroenterol. 2014;14: 223. doi: 10.1186/s12876-014-0223-9 25539656

12. Batista SA, Rocha GA, Rocha AM, Saraiva IE, Cabral MM, Oliveira RC, et al. Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer. BMC Microbiol. 2011;11: 61. doi: 10.1186/1471-2180-11-61 21435255

13. Quiroga AJ, Huertas A, Cómbita AL, Bravo MM. Variación en el número de repeticiones EPIYA-C en la proteína CagA de aislamientos colombianos de Helicobacter pylori y su capacidad para inducir fenotipo colibrí en células epiteliales gástricas. Biomédica. 2010;30: 251. doi: 10.7705/biomedica.v30i2.188 20890572

14. Li Q, Liu J, Gong Y, Yuan Y. Association of CagA EPIYA-D or EPIYA-C phosphorylation sites with peptic ulcer and gastric cancer risks. Medicine (Baltimore). 2017;96: e6620. doi: 10.1097/MD.0000000000006620 28445260

15. Yamaoka Y, El–Zimaity HMT, Gutierrez O, Figura N, Kim JK, Kodama T, et al. Relationship between the cagA 3’ repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology. 1999;117: 342–349. doi: 10.1053/gast.1999.0029900342 10419915

16. Schneider N, Krishna U, Romero‐Gallo J, Israel DA, Piazuelo MB, Camargo MC, et al. Role of Helicobacter pylori CagA molecular variations in induction of host phenotypes with carcinogenic potential. J Infect Dis. 2009;199: 1218–1221. doi: 10.1086/597416 19278338

17. Fajardo CA. CagA EPIYA polymorphisms in Colombian Helicobacter pylori strains and their influence on disease-associated cellular responses. World J Gastrointest Oncol. 2013;5: 50. doi: 10.4251/wjgo.v5.i3.50 23671731

18. Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127: 514–523. doi: 10.1053/j.gastro.2004.06.006 15300584

19. Devi SM, Ahmed I, Khan AA, Rahman SA, Alvi A, Sechi LA, et al. Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics. 2006;7: 1–10. doi: 10.1186/1471-2164-7-1

20. Argent RH, Hale JL, El-Omar EM, Atherton JC. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol. 2008;57: 1062–1067. doi: 10.1099/jmm.0.2008/001818-0 18719174

21. Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB, Romero-Gallo J, et al. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. Clin Microbiol Infect. 2010;16: 369–378. doi: 10.1111/j.1469-0691.2009.02811.x 19456839

22. Yamaoka Y, Osato MS, Sepulveda AR, Gutierrez O, Figura N, Kim JG, et al. Molecular epidemiology of Helicobacter pylori: separation of H. pylori from East Asian and non-Asian countries. Epidemiol Infect. 2000;124: 91–96. doi: 10.1017/s0950268899003209 10722135

23. Occhialini A, Marais A, Urdaci M, Sierra R, Munoz N, Covacci A, et al. Composition and gene expression of the cag pathogenicity island in Helicobacter pylori strains isolated from gastric carcinoma and gastritis patients in Costa Rica. Infect Immun. 2001;69: 1902–1908. doi: 10.1128/IAI.69.3.1902-1908.2001 11179371

24. Panayotopoulou EG, Sgouras DN, Papadakos K, Kalliaropoulos A, Papatheodoridis G, Mentis AF, et al. Strategy To Characterize the Number and Type of Repeating EPIYA Phosphorylation Motifs in the Carboxyl Terminus of CagA Protein in Helicobacter pylori Clinical Isolates. J Clin Microbiol. 2007;45: 488–495. doi: 10.1128/JCM.01616-06 17151214

25. Torres LE, González L, Melián K, Alonso J, Moreno A, Hernández M, et al. EPIYA motif patterns among Cuban Helicobacter pylori CagA positive strains. Biomedica. 2012;32: 23–31. doi: 10.1590/S0120-41572012000100004 23235784

26. Reyes-Leon A, Atherton JC, Argent RH, Puente JL, Torres J. Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and Its association with diversity in the cagA gene. Infect Immun. 2007;75: 3445–3454. doi: 10.1128/IAI.01951-06 17438024

27. Suzuki R, Shiota S, Yamaoka Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol. 2012;12: 203–213. doi: 10.1016/j.meegid.2011.12.002 22197766

28. Argent RH, Thomas RJ, Aviles-Jimenez F, Letley DP, Limb MC, El-Omar EM, et al. Toxigenic Helicobacter pylori infection precedes gastric hypochlorhydria in Cancer Relatives, and H. pylori virulence evolves in these families. Clin Cancer Res. 2008;14: 2227–2235. doi: 10.1158/1078-0432.CCR-07-2022 18381965

29. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001;2: 533–543. doi: 10.1016/S1470-2045(01)00486-7 11905707

30. Kalaf E, Al-Khafaji Z, Yassen N, AL-Abbudi F, Sadwen S. Study of the cytoxin-associated gene a (cagA gene) in Helicobacter pylori using gastric biopsies of Iraqi patients. Saudi J Gastroenterol. 2013;19: 69. doi: 10.4103/1319-3767.108474 23481132

31. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68: 394–424. doi: 10.3322/caac.21492 30207593

32. Correa P, Piazuelo MB, Camargo MC. The future of gastric cancer prevention. Gastric Cancer. 2004;7: 9–16. doi: 10.1007/s10120-003-0265-0 15052434

33. Greenberger NJ., Blumberg RS., Burakoff R. Diagnóstico y tratamiento en gastroenterología, hepatología y endoscopia. 7th ed. México D.F: McGraw-Hill Interamericana; 2011.

34. Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, et al. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut. 2017;66: 6–30. doi: 10.1136/gutjnl-2016-312288 27707777

35. Fock KM, Talley N, Moayyedi P, Hunt R, Azuma T, Sugano K, et al. Asia–Pacific consensus guidelines on gastric cancer prevention. J Gastroenterol Hepatol. 2008;23: 351–365. doi: 10.1111/j.1440-1746.2008.05314.x 18318820

36. Acosta N. Helicobacter pylori CagA protein polymorphisms and their lack of association with pathogenesis. World J Gastroenterol. 2010;16: 3936. doi: 10.3748/wjg.v16.i31.3936 20712055


Článek vyšel v časopise

PLOS One


2020 Číslo 1