Global depth perception alters local timing sensitivity


Autoři: Nestor Matthews aff001;  Leslie Welch aff002;  Elena K. Festa aff002;  Anthony A. Bruno aff001;  Kendra Schafer aff001
Působiště autorů: Department of Psychology, Denison University, Granville, OH, United States of America aff001;  Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228080

Souhrn

Dynamic environments often contain features that change at slightly different times. Here we investigated how sensitivity to these slight timing differences depends on spatial relationships among stimuli. Stimuli comprised bilaterally presented plaid pairs that rotated, or radially expanded and contracted to simulate depth movement. Left and right hemifield stimuli initially moved in the same or opposite directions, then reversed directions at various asynchronies. College students judged whether the direction reversed first on the left or right–a temporal order judgment (TOJ). TOJ thresholds remained similar across conditions that required tracking only one depth plane, or bilaterally synchronized depth planes. However, when stimuli required simultaneously tracking multiple depth planes–counter-phased across hemifields–TOJ thresholds doubled or tripled. This effect depended on perceptual set. Increasing the certainty with which participants simultaneously tracked multiple depth planes reduced TOJ thresholds by 45 percent. Even complete certainty, though, failed to reduce multiple-depth-plane TOJ thresholds to levels obtained with single or bilaterally synchronized depth planes. Overall, the results demonstrate that global depth perception can alter local timing sensitivity. More broadly, the findings reflect a coarse-to-fine spatial influence on how we sense time.

Klíčová slova:

Attention – Brass – Nonverbal communication – Perception – Psychophysics – Sensory perception – Vision – Open science


Zdroje

1. Rensink RA, Kuhn G. A framework for using magic to study the mind. Front Psychol. 2014;5:1508. Epub 2015/02/24. doi: 10.3389/fpsyg.2014.01508 25698983; PubMed Central PMCID: PMC4313584.

2. Ekroll V, Wagemans J. Conjuring Deceptions: Fooling the Eye or Fooling the Mind? Trends in cognitive sciences. 2016;20(7):486–9. Epub 2016/05/24. doi: 10.1016/j.tics.2016.04.006 27212588.

3. Quiroga RQ. Magic and cognitive neuroscience. Current biology: CB. 2016;26(10):R390–4. Epub 2016/05/25. doi: 10.1016/j.cub.2016.03.061 27218839.

4. Barnhart AS, Ehlert MJ, Goldinger SD, Mackey AD. Cross-modal attentional entrainment: Insights from magicians. Attention, perception & psychophysics. 2018;80(5):1240–9. Epub 2018/03/10. doi: 10.3758/s13414-018-1497-8 29520711; PubMed Central PMCID: PMC6035090.

5. Yao R, Wood K, Simons DJ. As if by Magic: An Abrupt Change in Motion Direction Induces Change Blindness. Psychological science. 2019;30(3):436–43. Epub 2019/02/08. doi: 10.1177/0956797618822969 30730789.

6. Suchow JW, Alvarez GA. Motion silences awareness of visual change. Current biology: CB. 2011;21(2):140–3. Epub 2011/01/11. doi: 10.1016/j.cub.2010.12.019 21215632.

7. Matthews N, Welch L, Festa E. Superior Visual Timing Sensitivity in Auditory But Not Visual World Class Drum Corps Experts. eNeuro. 2018;5(6). Epub 2019/01/11. doi: 10.1523/eneuro.0241-18.2018 30627642; PubMed Central PMCID: PMC6325546.

8. Brainard DH. The Psychophysics Toolbox. Spatial vision. 1997;10(4):433–6. 9176952.

9. Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial vision. 1997;10(4):437–42. Epub 1997/01/01. 9176953.

10. Matthews N, Welch L, Festa E, Clement A. Remapping time across space. Journal of vision. 2013;13(8). doi: 10.1167/13.8.2 23818678.

11. Green DM, M. SJ. Signal detection theory and psychophysics. New York: John Wiley & Sons; 1966.

12. Stanislaw H, Todorov N. Calculation of signal detection theory measures. Behavior research methods, instruments, & computers: a journal of the Psychonomic Society, Inc. 1999;31(1):137–49. Epub 1999/09/25. doi: 10.3758/bf03207704 10495845.

13. Keppel G, Saufley WH, Tokunaga H. Introduction to Design & Analysis. New York: W.H. Freeman and Company; 1992.

14. Hudson AE, Schiff ND, Victor JD, Purpura KP. Attentional modulation of adaptation in V4. The European journal of neuroscience. 2009;30(1):151–71. Epub 2009/06/30. doi: 10.1111/j.1460-9568.2009.06803.x 19558603; PubMed Central PMCID: PMC2770238.

15. Sundberg KA, Mitchell JF, Gawne TJ, Reynolds JH. Attention influences single unit and local field potential response latencies in visual cortical area V4. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012;32(45):16040–50. Epub 2012/11/09. doi: 10.1523/jneurosci.0489-12.2012 23136440; PubMed Central PMCID: PMC3711872.

16. Stelmach LB, Herdman CM. Directed attention and perception of temporal order. Journal of experimental psychology Human perception and performance. 1991;17(2):539–50. Epub 1991/05/01. doi: 10.1037//0096-1523.17.2.539 1830091.

17. Hikosaka O, Miyauchi S, Shimojo S. Focal visual attention produces illusory temporal order and motion sensation. Vision research. 1993;33(9):1219–40. Epub 1993/06/01. doi: 10.1016/0042-6989(93)90210-n 8333171.

18. Shore DI, Spence C, Klein RM. Visual prior entry. Psychological science. 2001;12(3):205–12. Epub 2001/07/05. doi: 10.1111/1467-9280.00337 11437302.

19. Tünnermann J, Petersen A, Scharlau I. Does attention speed up processing? Decreases and increases of processing rates in visual prior entry. Journal of vision. 2015;15(3). Epub 2015/03/04. doi: 10.1167/15.3.1 25733608.

20. Lagroix HE, Patten JW, Di Lollo V, Spalek TM. Perception of temporal order during the attentional blink: Using stimulus salience to modulate prior entry. Attention, perception & psychophysics. 2016;78(4):1064–73. Epub 2016/02/18. doi: 10.3758/s13414-016-1065-z 26883840.

21. Franconeri SL, Simons DJ. Moving and looming stimuli capture attention. Perception & psychophysics. 2003;65(7):999–1010. Epub 2003/12/17. doi: 10.3758/bf03194829 14674628.

22. von Muhlenen A, Lleras A. No-onset looming motion guides spatial attention. Journal of experimental psychology Human perception and performance. 2007;33(6):1297–310. Epub 2007/12/19. doi: 10.1037/0096-1523.33.6.1297 18085944.

23. Lin JY, Franconeri S, Enns JT. Objects on a collision path with the observer demand attention. Psychological science. 2008;19(7):686–92. Epub 2008/08/30. doi: 10.1111/j.1467-9280.2008.02143.x 18727784.

24. Dent K, Humphreys GW. Neuropsychological evidence for a competitive bias against contracting stimuli. Neurocase. 2011;17(2):112–21. Epub 2010/09/03. doi: 10.1080/13554794.2010.498381 20812139.

25. van der Meer AL, Svantesson M, van der Weel FR. Longitudinal study of looming in infants with high-density EEG. Developmental neuroscience. 2012;34(6):488–501. Epub 2012/12/22. doi: 10.1159/000345154 23258077.

26. Rossini JC. Looming motion and visual attention. Psychology & Neuroscience. 2014;7(3):425–31. doi: 10.3922/j.psns.2014.042

27. Orioli G, Filippetti ML, Gerbino W, Dragovic D, Farroni T. Trajectory Discrimination and Peripersonal Space Perception in Newborns. Infancy: the official journal of the International Society on Infant Studies. 2018;23(2):252–67. Epub 2018/03/16. doi: 10.1111/infa.12207 29541001; PubMed Central PMCID: PMC5836937.

28. Adams KA, Lawrence EK. Research Methods, Statistics, and Applications. Los Angeles: Sage; 2019.

29. Sekuler R, Ball K. Mental set alters visibility of moving targets. Science. 1977;198(4312):60–2. Epub 1977/10/07. doi: 10.1126/science.897682 897682.

30. Stanley RM, Matthews N. Invalid cues impair auditory motion sensitivity. Perception. 2003;32(6):731–40. doi: 10.1068/p5049 12892433.

31. Matthews N, Allen J. The role of speed lines in subtle direction judgments. Vision research. 2005;45(12):1629–40. doi: 10.1016/j.visres.2004.12.010 15781078.

32. Nakayama K, Silverman GH. Serial and parallel processing of visual feature conjunctions. Nature. 1986;320(6059):264–5. Epub 1986/03/20. doi: 10.1038/320264a0 3960106.

33. Plewan T, Rinkenauer G. The influence of relevant and irrelevant stereoscopic depth cues: Depth information does not always capture attention. Attention, perception & psychophysics. 2018;80(8):1996–2007. Epub 2018/07/22. doi: 10.3758/s13414-018-1571-2 30030691.

34. Alvarez GA, Cavanagh P. Independent resources for attentional tracking in the left and right visual hemifields. Psychological science. 2005;16(8):637–43. doi: 10.1111/j.1467-9280.2005.01587.x 16102067.

35. Chakravarthi R, Cavanagh P. Bilateral field advantage in visual crowding. Vision research. 2009;49(13):1638–46. doi: 10.1016/j.visres.2009.03.026 19362572; PubMed Central PMCID: PMC2760476.

36. Reardon KM, Kelly JG, Matthews N. Bilateral attentional advantage on elementary visual tasks. Vision research. 2009;49(7):691–701. doi: 10.1016/j.visres.2009.01.005 19200437.

37. Butcher SJ, Cavanagh P. A unilateral field advantage for detecting repeated elements. Perception & psychophysics. 2008;70(4):714–24. Epub 2008/06/18. doi: 10.3758/pp.70.4.714 18556933; PubMed Central PMCID: PMC2766572.

38. Butcher SJ, Cavanagh P. Familiarity does not affect the unilateral field advantage for repetition detection. Attention, perception & psychophysics. 2012;74(6):1216–25. Epub 2012/04/26. doi: 10.3758/s13414-012-0303-2 22532384.

39. Cavanagh P. Attention-based motion perception. Science. 1992;257(5076):1563–5. doi: 10.1126/science.1523411 1523411.

40. Lu ZL, Lesmes LA, Sperling G. The mechanism of isoluminant chromatic motion perception. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(14):8289–94. Epub 1999/07/08. doi: 10.1073/pnas.96.14.8289 10393987; PubMed Central PMCID: PMC22227.

41. Verstraten FA, Cavanagh P, Labianca AT. Limits of attentive tracking reveal temporal properties of attention. Vision research. 2000;40(26):3651–64. Epub 2000/12/16. doi: 10.1016/s0042-6989(00)00213-3 11116167.

42. Aghdaee SM, Cavanagh P. Temporal limits of long-range phase discrimination across the visual field. Vision research. 2007;47(16):2156–63. doi: 10.1016/j.visres.2007.04.016 17574644.

43. VanRullen R, Carlson T, Cavanagh P. The blinking spotlight of attention. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19204–9. doi: 10.1073/pnas.0707316104 18042716; PubMed Central PMCID: PMC2148268.

44. Chakravarthi R, Cavanagh P. Temporal properties of the polarity advantage effect in crowding. Journal of vision. 2007;7(2):11.1–3. Epub 2008/01/26. doi: 10.1167/7.2.11 18217826.

45. Macdonald JS, Cavanagh P, VanRullen R. Attentional sampling of multiple wagon wheels. Attention, perception & psychophysics. 2014;76(1):64–72. Epub 2013/10/12. doi: 10.3758/s13414-013-0555-5 24114356.

46. Marr D, Poggio T. Cooperative computation of stereo disparity. Science. 1976;194(4262):283–7. Epub 1976/10/15. doi: 10.1126/science.968482 968482.

47. Mayhew JE, Frisby JP, Gale P. Computation of stero disparity from rivalrous texture stereograms. Perception. 1977;6(2):207–8. Epub 1977/01/01. doi: 10.1068/p060207 876823.

48. Marr D, Poggio TA. A Computational Theory of Human Stereo Vision. Proceedings of the Royal Society of London Series B. 1979;204(1156):301–28.

49. Glennerster A. The time course of 2-D shape discrimination in random dot stereograms. Vision research. 1996;36(13):1955–68. Epub 1996/07/01. doi: 10.1016/0042-6989(95)00262-6 8759435.

50. Williams D, Phillips G, Sekuler R. Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature. 1986;324(6094):253–5. Epub 1986/11/20. doi: 10.1038/324253a0 3785395.

51. Shapiro A, Lu ZL. Relative brightness in natural images can be accounted for by removing blurry content. Psychological science. 2011;22(11):1452–9. Epub 2011/10/25. doi: 10.1177/0956797611417453 22020976.

52. Dixon E, Shapiro A, Lu ZL. Scale-invariance in brightness illusions implicates object-level visual processing. Sci Rep. 2014;4:3900. Epub 2014/01/30. doi: 10.1038/srep03900 24473496; PubMed Central PMCID: PMC3905277.

53. Dixon EL, Shapiro AG. Spatial filtering, color constancy, and the color-changing dress. Journal of vision. 2017;17(3):7. Epub 2017/03/10. doi: 10.1167/17.3.7 28278312.


Článek vyšel v časopise

PLOS One


2020 Číslo 1