A lineage-specific rapid diagnostic test (Chagas Sero K-SeT) identifies Brazilian Trypanosoma cruzi II/V/VI reservoir hosts among diverse mammalian orders

Autoři: Mairi C. W. McClean aff001;  Tapan Bhattacharyya aff001;  Pascal Mertens aff002;  Niamh Murphy aff001;  Quentin Gilleman aff002;  Yves Gustin aff002;  Nicolas Zeippen aff002;  Samanta C. C. Xavier aff003;  Ana M. Jansen aff003;  Michael A. Miles aff001
Působiště autorů: Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom aff001;  Coris BioConcept, Gembloux, Belgium aff002;  Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227828


Trypanosoma cruzi, the protozoan agent of Chagas disease in the Americas, is comprised of six genetic lineages (TcI-TcVI) and a possible seventh (TcBat, related to TcI). Identification of T. cruzi lineages infecting reservoir mammalian species is fundamental to resolving transmission cycles. However, this is hindered by the limited sensitivity and technical complexity of parasite isolation and genotyping. An alternative approach is serology using T. cruzi lineage-specific epitopes, such as those of the trypomastigote small surface antigen (TSSA). For surveillance of T. cruzi lineage infections in mammal species from diverse Brazilian regions, we apply a novel rapid diagnostic test (RDT, Chagas Sero K-SeT), which incorporates the TSSA peptide epitope specific to TcII/V/VI (TSSApep-II/V/VI) and Protein G detection of antibodies. Chagas Sero K-SeT RDT results with sera from experimentally infected mice, from tamarin primates (Leontopithecus spp.) and from canines (Canis familiaris) were concordant with corresponding TSSApep-II/V/VI ELISAs. The Chagas Sero K-Set detected TcII/V/VI infections in Leontopithecus spp. from the Atlantic forest (n = 46), in C. familiaris (n = 16) and Thrichomys laurentius (n = 2) from Caatinga biome and Chiroptera (n = 1) from Acre, Amazonia. The Chagas Sero K-SeT RDT is directly applicable to TcII/V/VI-specific serological surveillance of T. cruzi infection in several different mammalian Orders. It can replace ELISAs and provides efficient, point-of-sampling, low-cost detection of TcII/V/VI infections, with at least equivalent sensitivity, although some mammals may be difficult to trap, and, not unexpectedly, Chagas Sero K-SeT could not recognise feline IgG. Knowledge of sylvatic hosts of T. cruzi can be expanded, new reservoir species discovered, and the ecology of transmission cycles clarified, particularly with adaptation to further mammalian Orders.

Klíčová slova:

Brazil – Dogs – Enzyme-linked immunoassays – Chagas disease – Mammals – Primates – Serology – Trypanosoma cruzi


1. Nunes MCP, Beaton A, Acquatella H, Bern C, Bolger AF, Echeverria LE, et al. Chagas Cardiomyopathy: An Update of Current Clinical Knowledge and Management: A Scientific Statement From the American Heart Association. Circulation. 2018;138(12):e169–e209. doi: 10.1161/CIR.0000000000000599 30354432.

2. Perez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94. doi: 10.1016/S0140-6736(17)31612-4 28673423.

3. Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018;184:38–52. doi: 10.1016/j.actatropica.2017.09.017 28941731.

4. Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infectious Dis. 2001;1(2):92–100. doi: 10.1016/s1473-3099(01)00065-2

5. Breniere SF, Waleckx E, Barnabe C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl Trop Dis. 2016;10(8):e0004792. doi: 10.1371/journal.pntd.0004792 27571035

6. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104(7):1051–4. doi: 10.1590/s0074-02762009000700021 20027478.

7. Lima L, Espinosa-Alvarez O, Ortiz PA, Trejo-Varon JA, Carranza JC, Pinto CM, et al. Genetic diversity of Trypanosoma cruzi in bats, and multilocus phylogenetic and phylogeographical analyses supporting Tcbat as an independent DTU (discrete typing unit). Acta Trop. 2015;151:166–77. doi: 10.1016/j.actatropica.2015.07.015 26200788.

8. Lewis MD, Llewellyn MS, Yeo M, Acosta N, Gaunt MW, Miles MA. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids. PLoS Negl Trop Dis. 2011;5(10):e1363. doi: 10.1371/journal.pntd.0001363 22022633.

9. Jansen AM, Xavier SC, Roque AL. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Trop. 2015;151:1–15. doi: 10.1016/j.actatropica.2015.07.018 26200785.

10. Jansen AM, Xavier S, Roque ALR. Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasit Vectors. 2018;11(1):502. doi: 10.1186/s13071-018-3067-2 30189896.

11. Barros JHS, Xavier SCC, Bilac D, Lima VS, Dario MA, Jansen AM. Identification of novel mammalian hosts and Brazilian biome geographic distribution of Trypanosoma cruzi TcIII and TcIV. Acta Trop. 2017;172:173–9. doi: 10.1016/j.actatropica.2017.05.003 28499908.

12. Lisboa CV, Monteiro RV, Martins AF, Xavier SC, Lima Vdos S, Jansen AM. Infection with Trypanosoma cruzi TcII and TcI in free-ranging population of lion tamarins (Leontopithecus spp): an 11-year follow-up. Mem Inst Oswaldo Cruz. 2015;110(3):394–402. doi: 10.1590/0074-02760140400 25946156.

13. Rocha FL, Roque AL, Arrais RC, Santos JP, Lima Vdos S, Xavier SC, et al. Trypanosoma cruzi TcI and TcII transmission among wild carnivores, small mammals and dogs in a conservation unit and surrounding areas, Brazil. Parasitology. 2013;140(2):160–70. doi: 10.1017/S0031182012001539 23062278.

14. Lima Vdos S, Xavier SC, Maldonado IF, Roque AL, Vicente AC, Jansen AM. Expanding the knowledge of the geographic distribution of Trypanosoma cruzi TcII and TcV/TcVI genotypes in the Brazilian Amazon. PLoS One. 2014;9(12):e116137. doi: 10.1371/journal.pone.0116137 25551227

15. Di Noia JM, Buscaglia CA, De Marchi CR, Almeida IC, Frasch AC. A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas’ disease is due to a single parasite lineage. J Exp Med. 2002;195(4):401–13. doi: 10.1084/jem.20011433 11854354

16. Bhattacharyya T, Brooks J, Yeo M, Carrasco HJ, Lewis MD, Llewellyn MS, et al. Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology. Int J Parasitol. 2010;40(8):921–8. doi: 10.1016/j.ijpara.2010.01.002 20097201.

17. Cimino RO, Rumi MM, Ragone P, Lauthier J, D’Amato AA, Quiroga IR, et al. Immuno-enzymatic evaluation of the recombinant TSSA-II protein of Trypanosoma cruzi in dogs and human sera: a tool for epidemiological studies. Parasitology. 2011;138(8):995–1002. doi: 10.1017/S0031182011000540 21518468.

18. Kerr CL, Bhattacharyya T, Xavier SC, Barros JH, Lima VS, Jansen AM, et al. Lineage-specific serology confirms Brazilian Atlantic forest lion tamarins, Leontopithecus chrysomelas and Leontopithecus rosalia, as reservoir hosts of Trypanosoma cruzi II (TcII). Parasit Vectors. 2016;9(1):584. doi: 10.1186/s13071-016-1873-y 27846858

19. Bhattacharyya T, Messenger LA, Bern C, Mertens P, Gilleman Q, Zeippen N, et al. Severity of Chagasic Cardiomyopathy Is Associated With Response To A Novel Rapid Diagnostic Test For Trypanosoma cruzi TcII/V/VI. Clin Infect Dis. 2018. doi: 10.1093/cid/ciy121 29438471.

20. Murphy N, Macchiaverna NP, Victoria Cardinal M, Bhattacharyya T, Mertens P, Zeippen N, et al. Lineage-specific rapid diagnostic tests can resolve Trypanosoma cruzi TcII/V/VI ecological and epidemiological associations in the Argentine Chaco. Parasit Vectors. 2019;12(1):424. doi: 10.1186/s13071-019-3681-7 31522683

21. Shorthouse DP. SimpleMappr, an online tool to produce publication-quality point maps. [Retrieved from https://www.simplemappr.net. Accessed September 27, 2019]. 2010.

22. Bhattacharyya T, Falconar AK, Luquetti AO, Costales JA, Grijalva MJ, Lewis MD, et al. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition. PLoS Negl Trop Dis. 2014;8(5):e2892. doi: 10.1371/journal.pntd.0002892 24852444

23. Balouz V, Camara Mde L, Canepa GE, Carmona SJ, Volcovich R, Gonzalez N, et al. Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi. Clin Vaccine immunol. 2015;22(3):304–12. doi: 10.1128/CVI.00684-14 25589551

24. Bhattacharyya T, Mills EA, Jansen AM, Miles MA. Prospects for T. cruzi lineage-specific serological surveillance of wild mammals. Acta Trop. 2015;151:182–6. doi: 10.1016/j.actatropica.2015.06.017 26116784.

25. Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, et al. Chagas Disease: From Discovery to a Worldwide Health Problem. Front Public Health. 2019;7:166. doi: 10.3389/fpubh.2019.00166 31312626

26. Floridia-Yapur N, Vega-Benedetti AF, Rumi MM, Ragone P, Lauthier JJ, Tomasini N, et al. Evaluation of recombinant antigens of Trypanosoma cruzi to diagnose infection in naturally infected dogs from Chaco region, Argentina. Parasite immunol. 2014;36(12):694–9. doi: 10.1111/pim.12144 25201522.

27. Enriquez GF, Cardinal MV, Orozco MM, Schijman AG, Gurtler RE. Detection of Trypanosoma cruzi infection in naturally infected dogs and cats using serological, parasitological and molecular methods. Acta Trop. 2013;126(3):211–7. doi: 10.1016/j.actatropica.2013.03.001 23499860

28. Curtis-Robles R, Snowden KF, Dominguez B, Dinges L, Rodgers S, Mays G, et al. Epidemiology and Molecular Typing of Trypanosoma cruzi in Naturally-Infected Hound Dogs and Associated Triatomine Vectors in Texas, USA. PLoS Negl Trop Dis. 2017;11(1):e0005298. doi: 10.1371/journal.pntd.0005298 28095511

29. Maia da Silva F, Naiff RD, Marcili A, Gordo M, D’Affonseca Neto JA, Naiff MF, et al. Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest. Acta Trop. 2008;107(2):168–73. doi: 10.1016/j.actatropica.2008.05.015 18603222.

30. Marcili A, Valente VC, Valente SA, Junqueira AC, da Silva FM, Pinto AY, et al. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCIIa in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. Int J Parasitol. 2009;39(5):615–23. doi: 10.1016/j.ijpara.2008.09.015 19041313.

31. Acosta N, Miret J, Lopez E, Schinini A. First report of Sapajus cay naturally infected by Trypanosoma cruzi in San Pedro Department, Paraguay. Rev Bras Parasitol Vet. 2016;25(3):327–32. doi: 10.1590/S1984-29612016052 27579529.

32. Martinez MF, Kowalewski MM, Salomon OD, Schijman AG. Molecular characterization of trypanosomatid infections in wild howler monkeys (Alouatta caraya) in northeastern Argentina. Int J Parasitol Parasites Wildl. 2016;5(2):198–206. doi: 10.1016/j.ijppaw.2016.05.001 27617205

33. Chagas C. Nova tripanozomiaze humana. Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909;1:159.

34. Mott KE, Mota EA, Sherlock I, Hoff R, Muniz TM, Oliveira TS, et al. Trypanosoma cruzi infection in dogs and cats and household seroreactivity to T. cruzi in a rural community in northeast Brazil. Am J Trop Med Hyg. 1978;27(6):1123–7. doi: 10.4269/ajtmh.1978.27.1123 103446.

35. Adamczyk B, Tharmalingam-Jaikaran T, Schomberg M, Szekrenyes A, Kelly RM, Karlsson NG, et al. Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res. 2014;389:174–85. doi: 10.1016/j.carres.2014.01.018 24680513.

36. Roque AL, Xavier SC, da Rocha MG, Duarte AC, D’Andrea PS, Jansen AM. Trypanosoma cruzi transmission cycle among wild and domestic mammals in three areas of orally transmitted Chagas disease outbreaks. Am J Trop Med Hyg. 2008;79(5):742–9. 18981516.

37. Lima MM, Sarquis O, de Oliveira TG, Gomes TF, Coutinho C, Daflon-Teixeira NF, et al. Investigation of Chagas disease in four periurban areas in northeastern Brazil: epidemiologic survey in man, vectors, non-human hosts and reservoirs. Trans R Soc Trop Med Hyg. 2012;106(3):143–9. doi: 10.1016/j.trstmh.2011.10.013 22136953.

38. da Costa AP, Nunes PH, Leite BHS, Ferreira J, Tonhosolo R, da Rosa AR, et al. Diversity of bats trypanosomes in hydroeletric area of Belo Monte in Brazilian Amazonia. Acta Trop. 2016;164:185–93. doi: 10.1016/j.actatropica.2016.08.033 27633579.

39. Dos Santos FCB, Lisboa CV, Xavier SCC, Dario MA, Verde RS, Calouro AM, et al. Trypanosoma sp. diversity in Amazonian bats (Chiroptera; Mammalia) from Acre State, Brazil. Parasitology. 2017:1–10. doi: 10.1017/S0031182017001834 29144219.

40. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GA, et al. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol. 2005;35(2):225–33. doi: 10.1016/j.ijpara.2004.10.024 15710443.

41. Llewellyn MS, Lewis MD, Acosta N, Yeo M, Carrasco HJ, Segovia M, et al. Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PLoS Negl Trop Dis. 2009;3(9):e510. doi: 10.1371/journal.pntd.0000510 19721699

42. Duthie MS, Truman RW, Goto W, O’Donnell J, Hay MN, Spencer JS, et al. Insight toward early diagnosis of leprosy through analysis of the developing antibody responses of Mycobacterium leprae-infected armadillos. Clin Vaccine Immunol. 2011;18(2):254–9. doi: 10.1128/CVI.00420-10 21177914.

43. Herrera HM, Lisboa CV, Pinho AP, Olifiers N, Bianchi RC, Rocha FL, et al. The coati (Nasua nasua, Carnivora, Procyonidae) as a reservoir host for the main lineages of Trypanosoma cruzi in the Pantanal region, Brazil. Trans R SocTrop Med Hyg. 2008;102(11):1133–9. doi: 10.1016/j.trstmh.2008.04.041 18541281.

44. Sosa-Estani S, Gamboa-Leon MR, Del Cid-Lemus J, Althabe F, Alger J, Almendares O, et al. Use of a rapid test on umbilical cord blood to screen for Trypanosoma cruzi infection in pregnant women in Argentina, Bolivia, Honduras, and Mexico. Am J Trop Med Hyg. 2008;79(5):755–9. 18981518.

45. Verani JR, Seitz A, Gilman RH, LaFuente C, Galdos-Cardenas G, Kawai V, et al. Geographic variation in the sensitivity of recombinant antigen-based rapid tests for chronic Trypanosoma cruzi infection. Am Journal Trop Med Hyg. 2009;80(3):410–5. 19270291.

46. Martin DL, Marks M, Galdos-Cardenas G, Gilman RH, Goodhew B, Ferrufino L, et al. Regional variation in the correlation of antibody and T-cell responses to Trypanosoma cruzi. Am J Trop Med Hyg. 2014;90(6):1074–81. doi: 10.4269/ajtmh.13-0391 24710614

47. Alessio GD, de Araujo FF, Sales PA Jr, Gomes MS, Amaral LRD, Pascoal Xavier MA, et al. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a. PLoS Negl Trop Dis. 2018;12(2):e0006140. doi: 10.1371/journal.pntd.0006140 29462135

Článek vyšel v časopise


2020 Číslo 1